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ABSTRACT

Neural decoders often degrade across days due to slow drift in population activity. We introduce DDAlign, a
transformer-based framework that stabilizes neural manifolds over long time periods. The model learns latent
trajectories with an explicit velocity field and applies a lightweight day-specific aligner that corrects drift with
minimal calibration. We evaluate DDAlign on two multi-week macaque datasets. It consistently achieves the
highest cross-day decoding accuracy, preserves stable latent geometry, and maintains performance close to the
within-day baseline. Ablation results show that both the velocity encoder and alignment head are essential for
long-term robustness. DDAlign provides an efficient and general approach for stable neural decoding in practical
brain—-computer interface settings.

Keywords: Brain—computer interfaces, Neural manifold alignment, Cross-day decoding

1. INTRODUCTION

Brain computer interfaces rely on neural population activity to predict movement or force. Models trained on
intracortical recordings can reach high decoding accuracy within a single day. However, the performance often
becomes unstable across days. This instability is a major obstacle for long-term BCI use. Many biological and
technical factors lead to daily changes in neural activity. These factors include electrode micromotion, neural
adaptation and behavioral variability. As a result, the mapping between neural signals and behavior changes
over time. Even small changes can cause a decoder trained on one day to perform poorly on the next day.
Stable long-term decoding therefore requires methods that can handle cross day variability. This creates a need
for a principled framework that can represent population activity in a stable way and link neural dynamics to
behavior.

The concept of the neural manifold provides a principled framework for representing population activity.
Although individual neurons exhibit high dimensional and noisy firing patterns, their collective activity often
resides in a low dimensional latent space known as the neural manifold."»2 This latent space captures the
dominant modes of population activity during specific tasks and reflects the organized structure of cortical
representations.® Modeling neural activity within this manifold helps reduce noise while preserving task relevant
geometry.? Importantly, the neural manifold is not stable across days. Population activity recorded on different
days can occupy distinct regions of the latent space while maintaining similar overall shapes, indicating structured
across day drift.> % Such drift can arise from electrode micromotion, changes in neural excitability, and behavioral
variability, and tends to follow consistent directions in population activity rather than random noise. Even small
shifts in the manifold can disrupt the relationship between latent neural activity and behavior, making it essential
to model and compensate for drift to achieve stable long term decoding.58

Neural activity is not only organized in space but also evolves over time. Population activity traces smooth
trajectories on the neural manifold, reflecting the internal dynamics of the motor system. Several recent models
have leveraged this structure. LFADS?* infers smooth latent trajectories from neural activity, CEBRA® learns
continuous representations that preserve temporal neighborhoods and behavioral similarity, and MARBLE mod-
els latent dynamics to predict future neural states. These approaches demonstrate that neural dynamics contain
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meaningful information beyond static latent position. In particular, changes in the latent state over time provide
insight into how neural trajectories evolve on the manifold. If the latent state at time ¢ is Z;, the difference
Zyy1 — Zy describes the local direction of movement along the trajectory. This change can be interpreted as
a latent velocity, which provides a compact description of neural dynamics. This representation is especially
relevant for motor decoding, as behavior depends on both state and movement. When neural activity drifts
across days, changes can occur in both the manifold geometry and its temporal evolution. Addressing long term
decoding stability therefore requires modeling both geometric drift and alterations in latent dynamics. Modeling
such long range temporal dependencies and their evolution across days requires a representation that can flexibly
capture global temporal relationships in neural population activity, which motivates the use of attention based
sequence models.

2. RELATED WORKS

Neural alignment has been studied from several perspectives. These methods aim to reduce variability across
days, subjects, or tasks. Although they have shown promising results, each family has important limitations
when applied to practical neural decoding. This section summarizes three main categories of alignment methods
and discusses their strengths and weaknesses.

Geometric alignment methods. These approaches align neural activity using linear transforms such as
Procrustes analysis and canonical correlation analysis.®® They assume that neural manifolds across days share
similar geometry, so alignment reduces to estimating an optimal rotation or linear mapping. These methods
are simple, computationally efficient, and can work well when drift is small or labels are available. However,
geometric methods rely on supervision and often require matched labels or paired trials.® Their linear transforms
cannot capture nonlinear drift or local manifold deformation, which leads to degraded performance when drift
accumulates over long periods or when recording conditions differ across subjects.”®

Distribution alignment methods. These approaches match the statistical distributions of neural activity
across days. Examples include adversarial domain adaptation networks and generative models such as Cycle-
GAN.'0 NoMAD!"! follows this idea and introduces a distribution matching objective within a latent dynamical
framework. These methods do not require labels, which is advantageous for neural datasets with limited annota-
tions, and they can align sessions without trial correspondence. However, distribution alignment often requires
large datasets to estimate stable statistics, while neural recordings are typically limited in size. Adversarial
training can also introduce instability,'® and the resulting models are often computationally expensive. These
factors can limit their effectiveness in small sample decoding scenarios.

Dynamics based alignment methods. These approaches learn latent trajectories that capture the tem-
poral structure of neural activity. Representative models include LFADS,* CEBRA, and MARBLE.!? They
can learn smooth latent dynamics and often provide informative representations for decoding. By focusing on
underlying temporal structure, these methods can be robust to changes in firing rate or noise, and many allow
unsupervised training. However, these models are primarily designed to learn latent dynamics within individual
sessions rather than explicitly enforcing correspondence across days. As a result, cross day alignment may emerge
implicitly but is not directly optimized. In addition, they typically require long recordings for stable training,
which can limit their applicability when data availability is restricted.

3. METHODS
3.1 Model Overview

The model converts a sequence of neural population activity into a two dimensional trajectory. It contains three
components: an encoder that outputs a latent trajectory and a latent velocity field, a day-specific aligner that
reduces cross day drift, and a decoder that maps the aligned latent states to behavior (Fig. 1). Neural features
are z scored using training data, per day during alignment training, and using the first K trials of each test day.

Each trial provides neural observations
z(t) eRP, t=1,...,T, (1)

and the goal is to predict
y(t) € R*. (2)
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Figure 1. Model overview. The encoder outputs a latent trajectory Z4(¢) and a latent velocity v(t). A day-specific aligner
produces aligned latent states Z; ;,(t) using a drift bias b*) and a dynamic correction AZg 1 (t), which are mapped by the
decoder to the two dimensional prediction §(t).

3.2 Encoder: latent trajectory and latent velocity

The encoder maps the input sequence to a latent trajectory and a latent velocity field. We first project the
neural input into a d dimensional embedding

h(t) = Winx(t) + bin + p(t)v (3)

where p(t) is a positional encoding.

A Transformer encoder processes {h(t)}]_; and produces a latent state

2(t) = Enc(h(1), ..., h(T)),. (4)

To represent local dynamics on the latent manifold we apply a temporal convolutional head, named VelHead1D
in the figure. This module predicts a latent velocity field

U(t) :fvel(Z(l),...,Z(T))t. (5)
We define a dynamic latent representation by an Euler style update
Za(t) = 2(t) + v(t). ©

For a day k we denote the encoder output by Zg x(t). We use three levels of latent variables. The transformer
produces z(t), the latent velocity field defines Z4(t) = 2(t)+v(t), and the aligner maps Z; 1 (¢) to an aligned state
Z(’L i (t). This separation ensures that dynamics and alignment operate on different stages of the representation.

The base model is trained with a trajectory MSE loss and two velocity consistency losses to stabilize the
learned dynamics.

3.3 Day-specific aligner

For each non anchor day k, the aligner maps Z, (t) to the reference manifold.

Drift correction A day-specific bias models slow shifts:

ZPE(t) = Za(t) + b5 (7)

Dynamic correction A shared temporal CNN models temporal deformation:

AZy(t) = gayn(Z30 (1), ..., Z3H(T)),- (3)



Aligned latent representation The final aligned state is
Zi(t) = ZG5 (1) + o AZy(8), (9)
with a a small constant controlling the correction strength.

3.4 Decoder
A LayerNorm and linear layer map the aligned latent state to the predicted trajectory:

:l)(t) = WoutLN(Z(/j,k(t)) + bout- (10)

3.5 Training the aligner

The encoder and decoder are frozen. For each training day k, we compute Zg x(t), apply the aligner to obtain
Z 1, (t), and decode to gy (t).

The supervised loss is
1 .
'Cpos = NT ; ”yn(t) - yn(t)”; . (11)

To limit alignment strength we penalize latent changes:

1 2
£az = g7 2 N2awlthn = Zaal)all- "

The aligner objective is
Ealign = £pos + )\AZEAZ- (13)
3.6 Test time calibration

For each test day k, z score statistics are computed from the first K trials. At test time we keep the dynamic
correction gayn fixed and only adapt the drift bias b*) using an unsupervised objective,

Lealib = AazLaz, (14)
computed on calibration trials. The updated b®) is then applied to all trials of day k.

3.7 Summary

The encoder provides latent representations with explicit dynamics. The aligner applies day specific drift and
dynamic corrections. At test time only a single parameter is adapted, enabling stable cross-day decoding without
overfitting.

4. RESULTS
4.1 Data

We used two publicly released neural recording datasets from Ma et al.,'® which include multi-week intracortical
recordings collected from rhesus macaques implanted with 96-channel Utah arrays in primary motor cortex.

The first dataset contains recordings from monkey Jango performing an isometric wrist—force task. The
monkey controlled a cursor by generating two-dimensional wrist forces toward one of eight targets. Neural
activity was converted to smoothed firing rates in 50 ms bins. We used the first 32 trials of each day for day-
specific normalization and evaluated decoding on the remaining trials. This dataset spans multiple weeks and
serves as the main test bed for cross-day alignment. Fig. 2a illustrates the task paradigm.

The second dataset contains recordings from monkeys C and M performing a planar center-out reaching task.
We used the smoothed firing rates and the two-dimensional cursor trajectories as regression targets. This dataset
provides an additional validation set for evaluating cross-day generalization.
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Figure 2. Cross-day decoding and latent manifold alignment. (a) Task paradigm for the Jango isometric wrist—force
task. (b) Latent manifold visualization from three sessions (early, middle, late). (c) Cross-day decoding performance on
the Jango dataset. (d) Cross-day decoding performance on the CM dataset. (e) Example reconstructed hand trajectories
from the CM dataset.
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Figure 3. (a) Cross-day decoding performance for three model variants: the Transformer baseline, the Transformer with
the velocity encoder, and the full DDAlign model. (b) Distribution of decoding ratios relative to within-day performance.
DDAIlign shows the highest and most concentrated ratios, indicating improved long-term stability.



4.2 Cross-day decoding performance

We evaluated cross-day decoding on two independent datasets. The first dataset contains fourteen test days
from the Jango isometric-force task (Fig. 2c). The second dataset contains five additional days from the CM
reaching task (Fig. 2d). We compared three alignment methods: CCA, CEBRA® and DDAlign.

CCA was implemented following Gallego et al. (2020). We used 200 trials per test day for unsupervised
alignment. Neural activity was reduced with PCA before computing the linear transform. CEBRA was repro-
duced using the official implementation. We used 32 calibration trials with pseudo-labels for supervised training,
and a KNN decoder for prediction. DDAlign was trained only on the calibration trials and did not require paired
data.

Across all fourteen Jango days, DDAlign achieved the highest R2? values (mean around 0.83). CEBRA
performed moderately well (mean around 0.72). CCA showed the lowest performance (mean around 0.55) and
degraded on several days (Fig. 2¢). Results on the CM dataset showed the same trend (Fig. 2d). DDAlign
outperformed the other two methods on all five test days. This confirms that DDAlign provides more stable
long-term alignment across different tasks and animals.

4.3 Latent manifold alignment

We examined the latent representations across a long recording period. Fig. 2b shows t-SNE embeddings from
the first test day (20150808), a mid-range day (20150827) and the last test day (20151102). These results are
from the Jango dataset. These three sessions span several weeks, and they represent the beginning, middle and
end of the evaluation period. Each curve corresponds to one movement direction.

CCA produced unstable latent structures. Direction trajectories overlapped or changed shape across days.
The same direction occupied different regions on early, middle and late sessions, indicating that linear alignment
cannot maintain long-term manifold geometry. CEBRA formed clearer clusters on the first test day. However,
the structure drifted on the mid and late sessions. Several directions became fragmented or rotated on 20150827
and 20151102. This shows that supervised embedding becomes unstable when only a small calibration set is
available.

DDAIlign produced the most consistent latent geometry over time. Direction trajectories were compact and
well separated on all three sessions. Their shapes remained stable from the first to the last test day. Clusters
from different days almost overlapped, showing minimal drift over the entire multi-week period. In addition,
Fig. 2e shows reconstructed hand trajectories from the CM dataset, where DDAlign again preserves consistent
directional structure and reduces across-day distortions. These results demonstrate that DDAlign preserves
task-related neural structure and provides robust manifold alignment across long time intervals.

4.4 Analysis of Model Variants

We evaluated the contribution of each module using three variants: the Transformer baseline, the Transformer
with the velocity encoder, and the full DDAlign model.

Fig. 3a shows that the velocity encoder improves performance across almost all fourteen days. The mean
R2 rises from around 0.76 to 0.80. The lowest days also become less severe. This indicates that latent velocity
information helps stabilize the dynamics learned by the model. DDAlign achieves the best performance. Its
mean R2 reaches about 0.83 and remains high across all days. The model reduces errors on difficult sessions and
preserves accuracy on easy ones.

Fig. 3b compares each method to the within-day baseline. Transformer ratios mostly fall between 0.70 and
0.90. Adding the velocity encoder shifts the ratios upward. DDAlign produces the tightest distribution, with
most days between 0.90 and 0.95 and several near one. This shows that DDAlign maintains cross-day decoding
close to the within-day level.

Together these results show that the velocity encoder improves decoding stability, and the alignment head
further reduces long-term drift. Both modules are necessary for the full cross-day robustness of DDAlign.



5. CONCLUSION

Across all analyses, DDAlign provided the most stable and accurate cross-day decoding. The model uses a
transformer backbone together with a velocity encoder and a lightweight alignment head. These components
jointly preserve latent structure and reduce long-term drift, without requiring paired data. Experiments on
the Jango and CM datasets showed that DDAlign maintained consistent manifold geometry over several weeks,
preserved clear directional structure even on difficult recording days, and achieved the highest decoding accuracy
among all methods. The model variants further demonstrated that the velocity encoder stabilized the latent
dynamics, while the alignment head effectively corrected slow drift. Together they enabled cross-day performance
close to within-day decoding.

These results indicate that explicitly modeling both latent dynamics and slow drift provides an effective
and practical approach for long-term neural decoding. In contrast to methods that rely on implicit alignment
through embedding or large scale distribution matching, DDAlign directly integrates dynamics modeling with
lightweight calibration, making it suitable for settings with limited data. The DDAlign framework is general and
can be extended to other recording modalities, tasks, and alignment scenarios. Future work will explore rapid
adaptation with small samples, cross-subject alignment, and broader cross-system generalization to support more
stable long-term brain—computer interfaces.
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