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Abstract
Due to the nature of Spiking Neural Network-
s (SNNs), it is challenging to be trained by bio-
logically plausible learning principles. The multi-
layered SNNs are with non-differential neurons,
temporary-centric synapses, which make them n-
early impossible to be directly tuned by back prop-
agation. Here we propose an alternative biological
inspired balanced tuning approach to train SNNs.
The approach contains three main inspirations from
the brain: Firstly, the biological network will usu-
ally be trained towards the state where the temporal
update of variables are equilibrium (e.g. membrane
potential); Secondly, specific proportions of exci-
tatory and inhibitory neurons usually contribute to
stable representations; Thirdly, the short-term plas-
ticity (STP) is a general principle to keep the in-
put and output of synapses balanced towards a bet-
ter learning convergence. With these inspirations,
we train SNNs with three steps: Firstly, the SNN
model is trained with three brain-inspired princi-
ples; then weakly supervised learning is used to
tune the membrane potential in the final layer for
network classification; finally the learned informa-
tion is consolidated from membrane potential into
the weights of synapses by Spike-Timing Depen-
dent Plasticity (STDP). The proposed approach is
verified on the MNIST hand-written digit recog-
nition dataset and the performance (the accuracy
of 98.64%) indicates that the ideas of balancing
state could indeed improve the learning ability of
SNNs, which shows the power of proposed brain-
inspired approach on the tuning of biological plau-
sible SNNs.

1 Introduction
Decoding brain on both structural and functional perspectives
has lasted for centuries. In this procedure, many inspirations

∗Tielin Zhang and Yi Zeng contribute equally to this article and
should be considered as co-first authors.

from the brain have contributed to the research of Artificial
Intelligence (AI). For example, Hopfield network with recur-
rent connections is inspired by the Hippocampus; Hierarchi-
cal temporary memory (HTM) network with micro-column
structures is inspired by the neocortex; Convolutional neu-
ral network (CNN) with hierarchical perception is inspired
by the primary visual cortex; Reinforcement learning with
dynamic acquisition of online rules is inspired by the basal
ganglia centric pathway.

Many Artificial Neural Network (ANN) models are with
brain-inspirations at different level of details. And they have
shown their power on various tasks, such as image cap-
tion, language translation [LeCun et al., 2015] and the game
Go [Hassabis et al., 2017].

However, the tuning methods of back propagation in ANNs
are facing challenges on preventing overfitting, improving
transferability, and increasing convergence speed. The fire-
rate neuron models in ANNs are also short at processing tem-
poral information which makes them hard to be with good
self-stability. The principles of neurons, synapses, and net-
works in biological systems are far more complex and pow-
erful than those used in ANNs [Hassabis et al., 2017]. It has
been proved that even a single biological neuron with dendrit-
ic branches needs a three-layered ANN for finer simulation-
s [Häusser and Mel, 2003].

The intelligence of biological systems is based on multi-
scale complexities, from microscale of neurons and synaps-
es to the macroscale of brain regions and their interactions.
At the microscale, the neurons in biological systems repre-
sent or process information by discrete action potentials (or
spikes). It raises an open question that how these discrete neu-
ron activities interpret continuous functions, or from a similar
point of view, how these network with non-differential neu-
rons could be successfully tuned by biological learning prin-
ciples. Understanding these mechanisms of biological sys-
tems will give us hints on the new biological-plausible tuning
methods [Abbott et al., 2016].

Compared to other neural network models, Spiking Neu-
ral Networks (SNNs) are generally more solid on biological
plausibility. The SNNs are considered to be the third gen-
eration of neural network models, and are powerful on the

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1653



processing of both spatial and temporal information [Maass,
1997].

Neurons in SNNs communicate with each other by discon-
tinuous spikes, which raises gaps between spikes and behav-
iors but also narrow down the multi-level integration chal-
lenges since the spikes could be considered as naturally in-
teractive signals. In SNNs, the neurons will not be activated
until the membrane potentials reach thresholds. This makes
them energy efficient.

The diversity of neuron types (e.g. excitatory and inhibito-
ry neurons) also enables SNNs to keep balance, which will,
in turn, help SNNs on efficient learning and forming specific
functions. In addition, different computing costs in neurons
and synapses cause various kinds of time delays which will
also contribute to the asynchronous computation of SNNs, s-
ince these kinds of delays will open up a new temporal dimen-
sion on SNN for better representation capacity. SNNs have
been well applied on XOR problem [Sporea and Grüning,
2013], visual pattern recognition [Diehl and Cook, 2015;
Zeng et al., 2017], probabilistic inference [Soltani and Wang,
2010] and planning tasks [Rueckert et al., 2016].

Although SNNs have shown more biological plausibility
than conventional ANNs, from the computational perspec-
tive, lack of efficient and biological plausible learning meth-
ods in the current SNN models limits their values to support
understanding the nature of intelligence and potential appli-
cations.

With respect to this, some efforts have been made to train
the networks by biological plausible principles. Long-Term
Potentiation (LTP), Long-Term Depression (LTD), Short Ter-
m Plasticity (STP) which includes Short Term Facilitation
(STF) and Depression (STD), Hebbian learning, Spike Tim-
ing Dependent Plasticity (STDP), lateral inhibition, synap-
tic scaling, synaptic redistribution, and many other brain-
inspired learning principles from biological nervous system-
s are proposed and applied on the training procedure of
SNNs [Abraham and Bear, 1996]. Nevertheless, there is still
gaps for SNNs in specific applications when compared with
ANN models. More efficient and comprehensive learning
frameworks for SNNs need to be proposed and applied.

In this paper, we propose brain-inspired balanced tuning
for SNNs (Balanced SNN for short), we will tune the SNNs
based on three inspirations from the brain: Firstly, the bi-
ological network will be trained towards the equilibrium s-
tates for the membrane potentials. Secondly, the proportion
of excitatory and inhibitory neurons need to make a balance
and cooperate together for better tuning. Thirdly, the STP
is used to keep the synaptic input-output balanced towards
a better learning convergence. These inspirations are intro-
duced as three balance principles, namely, the Membrane Po-
tential (MP) based balance, the Excitatory-Inhibitory neuron
type (E-I) based balance and the STP based balance. With
these inspirations, we start to train SNNs with three steps:
training the membrane potential of SNNs with three brain-
inspired principles; then a weakly supervised learning is used
to tune the membrane potential in the final layer; finally con-
solidating the learned membrane potential information into
synaptic weights by STDP. The MNIST benchmark is used
to test the performance of the proposed model.

2 Related Works
Zenke et al. showed that the interaction of Hebbian homosy-
naptic plasticity with rapid non-Hebbian heterosynaptic plas-
ticity would be sufficient for memory formation, and then
memory could be recalled after a brief stimulation of a sub-
set of assembly neurons in a spiking recurrent network mod-
el [Zenke et al., 2015].

Alireza et al. proposed a local learning rule supported by
the theory of efficient, balanced neural networks (EBN) for
the tuning of recurrent spiking neural networks. An addition-
al tight excitatory and inhibitory balance is maintained for the
spiking efficiency and robustness [Alemi et al., 2018].

Zeng et al. proposed seven biologically plausible rules to
train multi-layer SNNs with Leaky-Integrated and Fire (LIF)
neurons, which includes more local principles such as dy-
namic neuron allocations, synapse formation and elimination,
various kinds of STDPs, and also more global learning prin-
ciples such as background noise influence and the proportion
of different kinds of neurons [Zeng et al., 2017]. It has been
proved that the synaptic weights in first few layers of SNNs
could be dynamically updated by STDP rules without any su-
pervision, and the weights between the final two layers could
be supervised and learned by Hebb’s law.

Diehl et al. trained an SNN with conductance-based
synapses, STDP, lateral inhibition, and adaptive spiking
threshold, and used an unsupervised learning scheme to train
a two-layered SNN. Finally, the accuracy reached 95% on the
MNIST benchmark [Diehl and Cook, 2015].

Some other efforts get around of the direct training of
SNNs by equivalent converting of learned synaptic weight-
s from ANNs into SNNs. Diehl et al. try to convert deep
ANNs into SNNs directly and keep the minimum perfor-
mance loss in the conversion process, the key techniques in-
clude the limitation of rectified linear units (ReLUs) with zero
bias and weight normalization into a linear range [Diehl et al.,
2015]. Although this method could achieve the performance
of 98.48% on 10-class hand-written digit MNIST classifica-
tion task, the performance of SNN is actually contributed by
ANN from backpropagation instead of pure biological plau-
sible SNN learning.

Lee et al. argued that the discontinuities between spikes
could be considered as noises, and the SNN without nois-
es are continuous and could use backpropagation for train-
ing. A new architecture based on this idea is tested on M-
NIST and N-MNIST dataset, and a better performance and a
faster convergence are achieved compared with conventional
SNNs [Lee et al., 2016].

SpikeProp is an error-backpropagation based supervised
learning algorithm for the training of spiking networks which
could actually be considered as equivalent exchanges from
spatial information (i.e. fire rates) in ANN to the temporal in-
formation (i.e. timing of inter-spike intervals) in SNN [Bohte
et al., 2002].

In our efforts, we aim to minimize artificial rules and
principles, and incorporate more biological plausible tuning
mechanisms. We want to understand whether more solid bi-
ological principles could bring current brain-inspired SNN
models to the next level and computationally enhance our un-
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Figure 1: The LIF neuron with discontinuous spikes

derstanding of learning in the brain, and be more practically
efficient in AI applications.

3 The Architecture of Balanced SNNs
Different SNNs are with different structures (e.g. recurren-
t, or feed-forward connections) and learning methods. The
recurrent networks are usually designed for temporal infor-
mation processing and the multi-layered networks are mainly
for the abstraction of spatial information.

The simplest version of feed-forward multi-layered SNNs
is with two-layered architecture, which is also the first suc-
cessful paradigm which could be tuned well by biological-
ly plausible learning principles [Diehl and Cook, 2015]. A
three layered SNN is constructed and trained by seven brain-
inspired learning principles [Zeng et al., 2017], which shows
unique contributions of different brain-inspired principles.

In this paper, we use similar building blocks as in [Zhang
et al., 2018] which uses the LIF neuron model for temporal
information processing and feedforward three-layered SNN
for information integration as the basic structure.

3.1 The Basic LIF Neuron Model
The LIF neuron model is the basic building block of the SNN
model in this paper. It’s function is for non-linear information
integration and non-differential spikes generation.

As shown in Figure 1, when pre-synaptic neuron fires, the
spikes are generated and propagated into post-synaptic neu-
rons. We use V to represent V (t) for simplicity. The dynamic
function of membrane potential in LIF will be integrated with
dt. The Cm is the membrane capacitance, the gL is the leaky
conductance, VL is the leaky potential, and Isyn is the input
stimulus (converted from spikes by synapses) from presynap-
tic neurons.

τm
dV

dt
= − (V − VL)−

gE/I

gL

(
V − VE/I

)
+
Isyn
gL

(1)

The gE is the excitatory conductance, gI is the inhibitory
conductance, VE and VI are the reversal potentials for excita-
tory and inhibitory neurons respectively, and τm = Cm

gL
.

The value of Isyn in Equation (2) will be updated by the
pre-synaptic spikes. The wj,i is the connection weight from
pre-synaptic neuron j to the target neuron i, δt denotes the
pre-synaptic spikes (in the next step it will be updated into

`
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lateral inhibition

Excitatory neurons
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Figure 2: The architecture of a feed forward multi-layered Balanced
SNN

non-differential potential Vj). The fsyn is the function from
membrane potential (or spikes) to currents, which could be a
decay factor or an STP function.

Isyn = fsyn

∑
j∈NE

wj,iδt

 (2)

3.2 The Multi-layered Balanced SNN
As shown in Figure 2, a multi-layered feed-forward SNN (for
simplicity here we use three-layered SNN) is constructed.
The neurons in the first layers are non-LIF neurons which
only receive the signals from inputs and output signals to the
next layer directly without decay.

The neurons in the second layers are LIF neurons with
both excitatory and inhibitory types. For the excitatory neu-
rons, all of the output synapses are excitatory (with posi-
tive values). On the contrary, for the inhibitory neurons, all
of the output synapses are inhibitory (with negative values).
Synapses will receive spikes from pre-synaptic neurons and
then send positive (or negative) spikes to postsynaptic neu-
rons after firing. The proportion of inhibitory neurons in the
second layer will be predefined.

The neurons in the final layer are all of excitatory LIF neu-
rons which could receive both inputs from pre-synaptic neu-
rons and also the additional teaching signals. The teaching
signals will be updated synchronously with the network in-
puts.

4 Brain inspired Balanced Tuning
Most of the cognitive and functional neural systems tend
to keep balanced states for better adaptability and stability.
Here we introduce three brain-inspired balance principles:
the Membrane Potential (MP) based balance, the Excitatory-
Inhibitory neuron type (E-I) based balance and the STP based
balance.

4.1 Membrane Potential based Balance
Here we focus on the membrane potential Vi as one of a main
balanced variable for tuning. Membrane potential is a tempo-
ral dynamical variable which works for the function of infor-
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mation integration or abstraction. Here we define ∆Ei = dEi

dt
as the energy representation of temporal differential states of
neurons.

∆Ei = Vi −

 N∑
j

wj,iVj − Vth,i

 (3)

As shown in Equation (3), the first term after equality sign
is the current membrane potential of neuron i, and the sec-
ond term is the future membrane potential of neuron i which
integrates all of the inputs from pre-synaptic Vj . The net-
work will learn dynamically towards network convergence,
and with training time going by, the current states and nex-
t states of neurons will become equivalent, which means the
∆Ei will be around zero.

Considering that in our work, the membrane potential Vi
has already taken the place of wj,i on network tuning (the
information will be consolidated from Vi to wj,i in final step-
s), we update Equation (3) into Equation (4) according to the
differential chain rule.

dEi

dVi
=
dEi

dt
× dt

dVi
=
Vi −

(∑N
j wj,iVj − Vth,i

)
dVi

dt

(4)

∆VMP
i = −ηMP

Vi −
(∑N

j wj,iVj −
∑N

j Vth,i

)
− (Vi − VL)− gE

gL
(Vi − VE)

(5)

Finally Equation (5) describes the detailed update mecha-
nisms of Vi based on the membrane potential based balance.

4.2 Excitatory-Inhibitory Neuron Type based
Balance

In the biological brains, the proportion of excitatory neurons
is larger compared to inhibitory neurons. These two types of
neurons are integrated together in a interactive way to make
the network in balanced states [Okun and Lampl, 2009].

Different with conventional ANNs, in which the weights
of output synapses from a single neuron could be both posi-
tive or negative, in our model, we follow the biological sys-
tem that normally, weights of synapses have to be positive for
excitatory neurons while being negative for inhibitory neu-
rons. Considering that the initial weights of neurons have al-
ready fit for the biological conditions, we separate the proce-
dure of weights update into two situations: the first situation
is when wj,i∆wj,i ≥ 0, in which the weights of synapses
will not change their symbols after update (i.e. the weights
of synapses will increase for the excitatory type and will de-
crease for the inhibitory type); the second situation is when
wj,i∆wj,i < 0, where the updated weights of synapses may
change their symbols.

The first situation has already fit for the biological brain-
s. For the second situation, we make another condition as
wj,i (wj,i + ∆wj,i) ≥ 0 to limit the update range of synapses
(i.e. wj,i+∆wj,i) which distinguish the types of neurons (ex-
citatory or inhibitory). The equation wj,i (wj,i + ∆wj,i) ≥ 0

could also be converted into the form of −∆wj,i

wj,i
≤ 1 which

could be considered as a condition to the learning rate ofwj,i,
as shown in Equation (6).

{
ηw = η0 if (wj,i∆wj,i ≥ 0)

ηw = η0

(
−η1

∆wj,i

wj,i

)
if (wj,i∆wj,i < 0)

(6)

where ηw is the learning rate for each synapse, η0 is the
predefined initial learning rate, η1 is the variable in the range
of (0, 1) which makes the condition of −∆wj,i

wj,i
≤ 1 works

(here we use η1 = 1
2 for simplicity). Finally, we will have the

rule for excitatory and inhibitory synapses update which also
works as an alternative balanced principle for network tuning.

4.3 Short-Term Plasticity based Balance
To a certain extent, the firing frequencies of neurons in SNNs
are kept balanced by STP. The spiking frequency will increase
by STF when the frequency is low, while will decrease by
STD when the frequency is high [Zucker and Regehr, 2002].
For STF, the release of Ca2+ from synapses will increase the
probability of the neuron firing next time. For STD, the high-
frequency firing will cost too much energy to support spike
generation next time which is very near for the last spike.

du

dt
= − u

τf
+ U(1− u)δ(t− tsp) (7)

dx

dt
=

1− x
τd
− uxδ(t− tsp) (8)

As shown in Equation (7) and Equation (8), u and x are the
normalized variables which represent the dynamical charac-
teristics of STF and STD respectively. δ(t− tsp) is the input
of spikes on time tsp, τf and τd are the recover time constants
of STF and STD respectively.

ISTP
syn

dt
= −Isyn

τs
+Awj,iuxδ(t− tsp) (9)

As shown in Equation (9), A is the maximal connection
weight, τs is the recover time constants for Isyn. Isyn will
be updated based on the u in Equation (7) and x in Equa-
tion (8), then the Isyn will be combined with Equation (1) for
the balanced tuning.

4.4 Supervised Learning in the Final Layer
As shown in Figure 2, the neurons in the final layer of the
network receive inputs from both the pre-synaptic neurons
and also the teaching signals. The teaching signal is a kind of
very high-frequency stimulus (the frequency will be the same
as the input signals of the first layer) to the neurons in the
final layer.

C =
1

2

N∑
i

(Vi − δ (t− tsp))
2 (10)

dV SUP
i = −ηc (Vi − δ (t− tsp)) (11)

As shown in Equation (10), N is the number of neurons
in the last layer, we set the differences of Vi and δ (t− tsp)
as the cost of the network. Then it could be converted into
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Equation (11), where the ηc is the learning rate. V SUP
i will

be calculated only one time in the final layer which contains
the divergence of realistic prediction and supervised teaching
signals.

4.5 Equivalent Conversion from Membrane
Potential to Synaptic Weights based on STDP

The tuning of Vi and its relationship with network outputs has
been discussed. However, the network has to save the learned
knowledge by consolidating them from membrane potential
Vi into synapses wj,i. Here we use STDP-like rules [Bi and
Poo, 2001; Bengio et al., 2015] to realize this function.

∆wj,i = ηSTDP

(
V t+1
j V t+1

i − V t
j V

t
i

)
(12)

The Equation (12) is a integration of two different types of
STDP rules, one is ∆wj,i ∝ Vj

dVi

dt
[Bengio et al., 2015] and

another is ∆wj,i ∝ dVj

dt Vi [Bi and Poo, 2001]. wj,i is the
synaptic weights between neuron i and neuron j, ηSTDP is
the learning rate of STDP rule, V t

j and V t+1
j are the different

temporal states of neuron j.

4.6 The Learning Procedure of the Balanced SNN
The training and test procedure of the balanced SNN model
is shown in Algorithm 1.

Algorithm 1 The Balanced SNN Learning Algorithm.
1. Convert the spatial inputs into temporary inputs with random
sampling. Initialize weights wj,i with random uniform distribu-
tion, membrane potential states Vi with leaky potential VL, iter-
ation time Iite, simulation time T , differential time ∆t, learning
rates ηMP , η0, η1, ηSTDP and ηc;
2. Start Training procedure:
2.1. Load training samples;
2.2. Update Vi by feed forward propagation with Equation (1)
and Equation (2);
2.3. Update VMP

i by the condition of membrane potential based
balance with Equation (5);
2.4. Update ISTP

syn by STP based balance with Equation (7), E-
quation (8) and Equation (9);
2.5. Update V SUP

i by weak supervised learning in final layer
with Equation (11);
2.6. Equivalent conversion from membrane potential to synaptic
weights based on integrated STDP, and passively update synaptic
weights wj,i based on Equation (12);
2.7. Update wj,i by excitatory-inhibitory neuron type based bal-
ance with Equation (6);
2.8. Iteratively train SNNs from Step 2.2 to Step 2.7 and finally
save tuned wj,i;
3. Start test procedure:
3.1. Load test samples;
3.2. Test the performance of trained balanced SNN with feed for-
ward propagation based on saved wj,i;
3.3. Output test performance without cross validation;

5 Experiments
We use the standard MNIST [LeCun, 1998] to test the pro-
posed brain-inspired Balanced SNN model. MNIST contains

0 5 10 15 20

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Iteration Times

Train
Test

Figure 3: The training and test accuracy with MP balanced tuning

10 classes of handwritten digits with 60, 000 training samples
and 10, 000 test samples.

In order to understand the mechanisms and individual con-
tributions, we will add each individual principle gradually to
compare and then integrate them together for the ultimate per-
formance.

5.1 Performance of the Membrane Potential based
Balanced Tuning on SNN

We construct an SNN and train it with only LIF based feed
forward (FF) architecture and the membrane potential bal-
anced principle based on Equation (3), Equation (4) and E-
quation (5).

As shown in Figure 3, the number of neurons in the hidden
layer are 100, and the x-axis of the figure is the iteration time,
the y-axis is the accuracy of SNN on the MNIST classification
task. We could conclude from the figure that the proposed
membrane potential (MP) balanced tuning principle is work-
ing for the network convergence, and the SNN could form the
classification ability after the MP based balanced tuning.

5.2 Performance of the Excitatory and Inhibitory
Neuron Type based Balance Tuning on SNN

The function of inhibitory neurons in the biological system
is a mystery. Some of them play the role on the anti post-
synaptic membrane potentials (anti-E), and some of them
work on blocking activities of other neurons (Block-E) [Zeng
et al., 2017]. Here we test the anti-E type of inhibitory
neurons and also the proportion of them on SNNs with E-
quation (6) based on the tuned result of membrane potential
based balanced tuning.

The test accuracies of E-I based balanced tuning on SNN
is shown in Figure 4, from which we could see that the
SNNs with a proper proportion of inhibitory neurons could
be trained for the function of classification. When the pro-
portion is too big (e.g. bigger than 80%), the network will be
failed to learn. More concretely, as shown in Figure 5, SNN
will be well tuned when the proportion of inhibitory neurons
is smaller than 60%. The best proportion of inhibitory neu-
rons is 30%.
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Figure 4: The test accuracy of E-I based balance tuning

5.3 Performance of the STP based Balanced
Tuning on SNN

The STP principle will keep the neurons firing towards a sta-
ble frequency. Figure 6 shows the dynamic changes of vari-
ables of u and x with the input of spikes.

For the different frequencies of spikes, the u and x will be
tuned automatically towards the stable output of Isyn which
will be updated by the product of u and x in Equation (9).

As shown in Figure 7, when the iteration time is 100, the
test accuracy performance on pure MP balanced tuning could
reach 58%, the MP with feedforward LIF neuron model could
reach 89%, and the integration of MP, FF, STP, and 30% in-
hibitory neurons could reach 97.9%. As a conclusion, the M-
P, the proportion of E-I neurons and STP are contributing the
balanced effects to SNNs for a better classification accuracy.

5.4 Comparative Studies
The training of SNNs is very different with DNNs which
are trained by backpropagation. Here we exclude these none
biological-plausible tuning methods which firstly train DNNs
by backpropagation and then convert into SNNs (e.g. the
Convolutional SNN in Table 1 with the accuracy of 99.1%),
since these efforts are not biological plausible, and the contri-
butions are mainly from backpropagation.

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Pe
rfo

rm
an

ce

Proportion of Inhibitory Neurons
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Some state of the art performance of SNNs on the MNIST
benchmark with different structures is shown in Table 1. For
two-layer SNNs, the accuracy of 95% is achieved with 6, 400
output neurons [Diehl and Cook, 2015]. For three-layered
SNNs, VPSNN gets the accuracy of 98.52% with 4, 800 hid-
den neurons [Zhang et al., 2018]. While in our work (Bal-
anced SNN), we reach the accuracy of 97.90% with only 100
hidden neurons and also reach 98.64% with 6, 400 hidden
neurons. To the best of our knowledge, our result is the s-
tate of the art performance of pure biological plausible SNNs
on the MNIST benchmark.

6 Conclusion
There are various learning principles from the brain which
may help to design better spiking neural network models for
Artificial Intelligence. However, how to integrate these brain
inspirations together properly for optimal model are still with
big challenges. Here we focus on the research of balanced
states of SNNs and try to integrate three kinds of balanced
learning principles together. They are the membrane potential
based balance, the excitatory-inhibitory neuron type based
balance and the STP based balance. The model analysis sup-
ports the hypothesis that the balanced state of the network is
important for network training, and the experimental result
also proves that, even without backpropagation, a better SNN
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Figure 7: The test accuracy of balanced SNNs with the integration
of different rules
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Architecture Preprocessing (Un-)Supervised Training Type Learning Principles Accuracy
Convolutional SNN [Diehl et al., 2015] None Supervised Rate-based Backpropagation 99.1%
Two-layer SNN [Diehl and Cook, 2015] None Unsupervised Spike-based Exponential STDP 95%

Voltage-driven Plasticity-centric SNN (VPSNN) [Zhang et al., 2018] None Both Spike-based Equilibrium learning + STDP 98.52%
Balanced SNN (with 100 hidden neurons) None Both Spike-based Balanced learning + STDP 97.90%

Balanced SNN (with 6,400 hidden neurons) None Both Spike-based Balanced learning + STDP 98.64%

Table 1: Classification accuracies of different SNNs on the MNIST task.

performance could be achieved based on a deeper integration
of brain-inspired principles.
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