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Abstract. Sleep is a critical state characterized by reduced mental and physical
activity, with distinct brain wave patterns observed via electroencephalogram
(EEG) and electrooculogram (EOG). Adequate sleep is essential for
physiological and mental health, while poor sleep quality can impair attention,
immunity, and increase chronic disease risk. Accurate sleep staging is vital for
assessing sleep quality, but traditional manual methods are time-consuming and
subjective. Existing automatic sleep staging approaches struggle to capture
temporal dynamics, multi-scale signal characteristics, and multimodal data
correlations, often yielding low accuracy, particularly with imbalanced sleep
stage distributions. This study proposes a novel hybrid architecture integrating a
multi-scale convolutional feature extractor with a Neural Ordinary Differential
Equation (Neural ODE) network to enhance classification accuracy by
capturing multi-scale temporal and dynamic features of EEG and EOG signals.
A Transformer-based multimodal feature fusion mechanism leverages self-
attention to establish cross-modal associations, improving feature integration.
Additionally, a focal loss function is introduced to address category imbalance
by dynamically adjusting weights, enhancing recognition of minority sleep
stages. The proposed method offers significant improvements in automatic
sleep staging, with potential for clinical and research applications.

Keywords: Deep learning; EEG signal processing; Neural ordinary differential
equations; Multimodal fusion.

1 Introduction

Sleep is a vital physiological process that significantly impacts physical and mental
health. It is characterized by distinct stages — Wake, Non-Rapid Eye Movement
(NREM) stages (N1, N2, N3), and Rapid Eye Movement (REM)—each associated
with unique brain wave patterns observable through electroencephalogram (EEG) and
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electrooculogram (EOG) signals [1]. Accurate classification of these stages is crucial
for evaluating sleep quality, diagnosing sleep disorders such as obstructive sleep
apnea, and supporting long-term health monitoring [2]. Traditionally, sleep stage
scoring relies on manual analysis of polysomnography (PSG) data by experts, which
is time-consuming, labor-intensive, and subject to inter-rater variability [3]. The
advent of automated sleep stage classification using deep learning has offered a
promising solution to enhance efficiency and objectivity, yet existing methods face
specific limitations that hinder their performance.

Current deep learning approaches often fail to effectively capture the multi-scale
temporal dynamics and complex non-linear patterns in EEG and EOG signals, leading
to reduced classification accuracy [4]. Moreover, these methods frequently employ
inadequate fusion techniques, which limit their ability to fully exploit the intrinsic
correlations between multimodal signals like EEG and EOG, thus missing critical
complementary information [5]. Additionally, the imbalanced nature of sleep stage
datasets, where minority classes such as N1 (comprising only 2%-5% of samples) are
underrepresented, poses a significant challenge for achieving robust classification
across all stages [6]. Addressing these limitations is critical for advancing the
practical utility of automated sleep stage classification in clinical and research
settings.

To overcome these limitations, this paper proposes a novel deep learning
framework for sleep stage classification that integrates multi-scale convolutional
neural networks (CNNs), neural ordinary differential equations (Neural ODEs), and a
Transformer-based cross-attention mechanism for effective multimodal EEG and
EOG fusion. Our approach makes the following key contributions:

1. Multi-Scale CNN and Neural ODE Integration: We introduce a hybrid
architecture combining a multi-scale CNN feature extractor with a Neural ODE
module. The multi-scale CNN captures temporal features across varying time scales,
while the Neural ODE models the continuous dynamic evolution of EEG and EOG
signals, enhancing the representation of non-linear temporal patterns.

2. Transformer-Based Cross-Attention Fusion: A cross-attention mechanism is
employed to dynamically model and fuse cross-modal dependencies between EEG
and EOG signals, enabling complementary feature enhancement and improving
classification performance.

3. Focal Loss for Class Imbalance: To address the class imbalance problem, we
utilize the focal loss function, which dynamically adjusts sample weights to prioritize
minority classes like N1, thereby improving recognition accuracy for
underrepresented stages.

2 Related Work

Sleep stage classification has seen significant advancements with the integration of
signal processing and deep learning techniques, transitioning from manual feature
engineering to automated, data-driven approaches. Traditional methods primarily
relied on handcrafted features extracted from electroencephalogram (EEG) signals,
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such as time-domain statistics, frequency-domain power spectra, or non-linear
dynamics, followed by classification using machine learning algorithms like random
forests, support vector machines, or decision trees [7, 8]. For example, Hassan et al.
[9] employed tunable Q-factor wavelet transform (TQWT) to decompose EEG signals
and extract spectral features, achieving a classification accuracy of 91.50% using a
random forest classifier on the Sleep-EDF dataset. Liu et al. [2] utilized ensemble
empirical mode decomposition (EEMD) to extract statistical and non-linear features
from EEG signals, combining them with an XGBoost classifier to achieve 93.1%
accuracy. Similarly, Liang et al. [10] leveraged multi-scale entropy and autoregressive
features, while Fraiwan et al. [11] used Renyi entropy with random forests, reporting
accuracies of 83%. Despite their effectiveness, these methods require extensive
feature engineering, which is labor-intensive and often lacks generalizability across
diverse datasets or populations.

The advent of deep learning has revolutionized sleep stage classification by
enabling end-to-end feature extraction and improving robustness. Convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), including long short-
term memory (LSTM) networks, have become prevalent due to their ability to model
the temporal and sequential nature of polysomnography (PSG) signals. Supratak et al.
[12] introduced DeepSleepNet, a hybrid model combining CNNs for feature
extraction and LSTMs for sequence modeling, achieving 82% accuracy on the Sleep-
EDF dataset using single-channel EEG. Mousavi et al. [13] proposed SleepEEGNet, a
sequence-to-sequence architecture integrating CNNs and LSTMs, which reported
84.26% accuracy. Phan et al. [14] developed SeqSleepNet, a hierarchical RNN with
attention mechanisms, leveraging multi-channel PSG signals to achieve 87.1%
accuracy. Tsinalis et al. [15] employed a one-dimensional CNN for end-to-end sleep
stage scoring, attaining 82% accuracy, while Ghimatgar et al. [16] combined gated
recurrent units (GRUs) with CNNs to reach 89% accuracy by capturing temporal
trends.

Beyond EEG, the incorporation of electrooculogram (EOG) signals has shown
promise, particularly for distinguishing stages like REM and N1. Fan et al. [17]
proposed EOGNet, a deep learning model based on single-channel EOG, achieving
81.2% accuracy on the MASS dataset and demonstrating EOG ’ s potential as a
standalone or complementary modality. Van Gorp et al. [18] reported 85% accuracy
using single-channel EOG for sleep staging in patients with sleep disorders. Estrada et
al. [19] highlighted the synergistic role of EOG and electromyogram (EMG) in
improving classification accuracy, particularly for complex stages.

Despite these advancements, several challenges persist. First, many models
struggle to capture the multi-scale temporal dynamics and continuous non-linear
patterns in EEG and EOG signals, limiting their ability to represent complex sleep
stage transitions [4]. Second, multimodal fusion is often rudimentary, relying on
simple feature concatenation that fails to exploit cross-modal interactions between
EEG and EOG [20]. For instance, direct concatenation may introduce redundant or
isolated information, reducing discriminative power. Third, class imbalance remains a
critical issue, with minority classes like N1 (2%-5% of samples) exhibiting
significantly lower classification accuracies (e.g., 30%-40% in some studies [15, 21,
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22]). Data augmentation techniques, such as time-shift rolling [23] or SMOTE [24],
have been explored to mitigate imbalance, but they risk introducing artifacts or
distributional biases. Weighted loss functions, like focal loss [25], have shown
promise but are underutilized in sleep staging.

Recent studies have begun exploring advanced techniques to address these gaps.
Neural ordinary differential equations (Neural ODEs) [26] offer a continuous
modeling framework for temporal dynamics, overcoming the limitations of discrete-
layer networks. Transformer-based attention mechanisms [27] have been applied to
capture long-range dependencies and cross-modal interactions, though their use in
sleep staging is limited. Our work builds on these developments by proposing a novel
framework that integrates multi-scale CNNs for robust feature extraction, Neural
ODEs for continuous dynamic modeling, Transformer-based cross-attention for
multimodal fusion, and focal loss to address class imbalance. This approach achieves
superior performance compared to state-of-the-art models, particularly for minority
classes, as demonstrated on the Sleep-EDF dataset.

3 Proposed Method

This section presents the proposed deep learning framework for sleep stage
classification, designed to address the challenges of multi-scale temporal feature
extraction, effective multimodal fusion, and class imbalance in EEG and EOG
signals. The framework integrates a multi-scale convolutional neural network (CNN)
feature extractor, a Transformer-based cross-attention mechanism for multimodal
fusion, a neural ordinary differential equation (Neural ODE) module for continuous
dynamic modeling, and a gated recurrent unit (GRU) classifier. The overall
architecture is depicted in Figure 1, and each component is detailed below, along with
optimization strategies to ensure robust performance.

Figure 1: Proposed Model Architecture

3.1 Multi-Scale Convolutional Feature Extractor

EEG and EOG signals exhibit complex temporal patterns across multiple time scales,
such as high-frequency sleep spindles (12-14 Hz) in the N2 stage and low-frequency
slow-wave activity (0.5-4 Hz) in the N3 stage. To effectively capture these multi-
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scale characteristics, we design a multi-scale CNN feature extractor with parallel
convolutional branches, each tailored to extract features at different temporal
resolutions.

For each modality (EEG and EOG), the input signal is divided into 30-second
epochs, preprocessed to eliminate noise, and processed through two parallel branches.
The short-term branch utilizes a smaller convolutional kernel (size 5) to capture high-
frequency, localized patterns, such as sleep spindles or rapid eye movements,
followed by a max-pooling layer to reduce dimensionality while retaining key
features. In contrast, the medium-term branch employs a larger kernel (size 15) to
extract broader temporal patterns, like slow-wave activity, and is similarly followed
by a max-pooling layer.

Each convolutional layer is followed by batch normalization to stabilize training
and a ReLU activation function to enhance non-linear representation. The
convolutional operation for the ( i )-th branch is defined as: �� = � � ��� ∗ �� + �� ,
where x is the input signal, �� and �� are the weights and bias, * denotes
convolution, and f is the ReLU function. The outputs from both branches are
concatenated to form modality-specific feature sequences, ���� ��� ���� ∈ ��×� ,
where T is the sequence length and d is the feature dimension. This multi-scale
approach ensures comprehensive capture of temporal patterns critical for
distinguishing sleep stages.
3.2 Transformer-Based Cross-Attention Fusion

EEG and EOG signals provide complementary information—EEG captures global
brain activity patterns, while EOG reflects localized eye movement dynamics.
Traditional fusion methods, such as feature concatenation, often fail to exploit cross-
modal interactions, leading to suboptimal performance. To address this, we propose a
Transformer-based cross-attention mechanism to dynamically model and fuse cross-
modal dependencies between EEG and EOG features.

The feature sequences ���� and ���� from the multi-scale CNN are mapped to que
ry (Q), key (K), and value (V) vectors using learnable weight matrices: ���� =

������, ���� = ������, ���� = ������, ���� = ������, ���� =
������, ���� = ������ . The cross-attention output for EEG is computed as:

Attention��� = softmax ��������
�

��
���� and similarly for EOG: Attention��� =

softmax ��������
�

��
����. Here, �� is the dimension of the key vectors, and the softm

ax operation ensures normalized attention weights. The attention outputs, representing
EEG features enhanced by EOG context and vice versa, are concatenated and passed
through additional Transformer layers to produce a fused feature sequence ������ ∈
��×�'. This approach captures both modality-specific and cross-modal interactions, en
hancing discriminability, particularly for stages like REM, where EOG’s rapid eye mo
vements correlate with EEG’s high-frequency patterns.
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3.3 Neural Ordinary Differential Equation

Sleep stage transitions exhibit continuous, non-linear temporal dynamics that are
challenging to model with discrete-layer neural networks. To address this, we
incorporate a Neural ODE module, which represents feature evolution as a continuous
differential equation: �ℎ �

��
= � ℎ � , �, θ , where h(t) is the hidden state, f is a neural

network parameterized by θ , and t denotes time. The output state is obtained via
numerical integration:ℎ �1 = ℎ �0 + �0

�1 � ℎ � , �, θ ��� . In our model, the input is
the fused feature sequence ������ , and the initial hidden state is initialized as:
ℎ �0 = ����������� + ����� , where ����� and ����� are learnable parameters. The
function f is implemented as a two-layer multilayer perceptron (MLP) with ReLU
activation to capture non-linear dynamics. The integration is performed using the
Dopri5 Runge-Kutta method for accuracy and efficiency. The output � ∈ ��×�''

represents an enhanced feature sequence that captures the continuous temporal
evolution of the fused EEG and EOG signals, improving the modeling of stage
transitions, such as from N1 to N2 or N3 to REM.
3.4 Gated Recurrent Unit Classifier

Sleep stages exhibit sequential dependencies, with transitions following specific
patterns (e.g., N1 to N2). To model these dependencies, we employ a GRU as the
classifier, which processes the Neural ODE output sequentially. The GRU updates its
hidden state using update and reset gates: �� = σ �� ℎ�−1, �� + �� , �� =
σ �� ℎ�−1, �� + �� , ℎ�� = tanh �ℎ �� ⊙ ℎ� − 1, �� + �ℎ , ℎ� = 1 − �� ⊙ ℎ�−1 +

�� ⊙ ℎ�� , where �� ∈ � is the input at time t, ℎ� is the hidden state, σ is the sigmoid
function, and ⊙ denotes element-wise multiplication. The final hidden state ℎ� is
passed through a fully connected layer to predict stage probabilities: P =
softmax ���ℎ� + ��� , where � ∈ �� and C = 5 (W, N1, N2, N3, REM). The GRU’
s hidden dimension is set to 128, with a 10% dropout applied to prevent overfitting.
The sequential processing ensures that the model captures stage transition patterns,
enhancing classification accuracy.
3.5 Optimization Strategies

To mitigate the impact of class imbalance, particularly for the N1 stage (2%-5% of
samples), we use the focal loss function: FL �� =− α� 1 − ��

γ log �� , where �� is
the predicted probability for the true class, α� is a class-specific weight higher for
minority classes, and γ = 2 focuses on hard-to-classify samples. This approach
prioritizes minority classes, improving their recognition accuracy.

A 10% dropout is applied after the convolutional, cross-attention, and GRU layers
to prevent overfitting and enhance generalization, particularly given the high-
dimensional EEG and EOG features.

Adam Optimizer with Cosine Annealing: The Adam optimizer is used with an
initial learning rate of 10−3 . To improve convergence, we employ a cosine annealing
scheduler to adjust the learning rate over a cycle of 50 epochs: η� = η��� + 1

2
η��� −



7

η��� 1 + cos �
�

π , η��� = 10−3, η��� = 10−5,T = 50. This strategy enables rapid
exploration in early training and fine-tuned optimization in later stages.

The combination of these components and optimization strategies enables the
proposed model to effectively capture multi-scale features, fuse multimodal signals,
model continuous dynamics, and handle class imbalance, leading to robust sleep stage
classification performance.

4 Experimental Setup and Results

This section describes the experimental setup, evaluation metrics, and results of the
proposed deep learning framework for sleep stage classification. The model is
evaluated on the Sleep-EDF Database and its expanded version, with comparisons
against state-of-the-art baselines and ablation studies to assess the contribution of
each component. The experiments aim to validate the effectiveness of the proposed
multi-scale convolutional neural network (CNN), Transformer-based cross-attention
fusion, neural ordinary differential equation (Neural ODE), and focal loss in
addressing multi-scale feature extraction, multimodal fusion, and class imbalance.
4.1 Dataset and Preprocessing

The Sleep-EDF Database and its expanded version, hosted by PhysioNet, are widely
used benchmarks for sleep stage classification [28]. The dataset comprises 197 whole-
night polysomnography (PSG) recordings, including electroencephalogram (EEG,
Fpz-Cz channel), electrooculogram (EOG), electromyogram (EMG), and additional
physiological signals, with a sampling frequency of 100 Hz. Sleep stages are
annotated according to the Rechtschaffen and Kales standard [29] and converted to
the American Academy of Sleep Medicine (AASM) standard, categorizing stages into
five classes: Wake (W), Non-Rapid Eye Movement (N1, N2, N3), and Rapid Eye
Movement (REM). The expanded dataset includes additional recordings from the
Sleep Cassette Study (1987-1991) and Sleep Telemetry Study (1994), totaling 153
and 44 records, respectively [30].

Preprocessing is performed to ensure signal quality and compatibility with the
model. EEG and EOG signals are bandpass-filtered to remove noise and artifacts,
retaining frequencies relevant to sleep stages (0.5-30 Hz for EEG, 0.05-3.5 Hz for
EOG). The signals are segmented into 30-second epochs, each labeled with one of the
five sleep stages. Epochs with ambiguous or missing annotations are discarded. The
dataset is split into 80% for training and 20% for testing, ensuring a balanced
representation of sleep stages across splits.
4.2 Experimental Settings

The proposed model is implemented in PyTorch and trained on a single NVIDIA
GPU. Hyperparameters are tuned using grid search and validated on a hold-out
validation set. The final model configuration is designed to optimize performance in
sleep stage classification. It employs the Adam optimizer with an initial learning rate
of 10⁻³, β₁ = 0.9, and β₂ = 0.999, paired with a cosine annealing learning rate
scheduler that cycles every 50 epochs and reduces the learning rate to a minimum of
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10⁻⁵. Training is conducted with a batch size of 64 over 500 epochs. To address class
imbalance, focal loss is used with γ = 2 and class weights (α_t) set inversely
proportional to class frequency, prioritizing minority classes like N1. A 10% dropout
is applied after the convolutional, cross-attention, and GRU layers, with the GRU
hidden dimension set to 128.

In this paper, performance is assessed using two metrics: Overall Accuracy (ACC),
which measures the percentage of correctly classified epochs, and Macro-Averaged
F1 Score (Macro-F1), the harmonic mean of precision and recall averaged across all
classes, ensuring balanced evaluation despite class imbalance.Results
4.3 Contrast Experimental

The confusion matrix for the full model, shown in Figure 2, illustrates balanced
performance across all sleep stages. Notably, the model achieves high accuracy for
the N1 stage, which is typically challenging due to its low sample proportion (2%-
5%). Misclassifications are minimal, primarily occurring between adjacent stages
(e.g., N1 and N2), reflecting the model ’ s ability to capture subtle stage transitions.
The cross-attention mechanism and focal loss contribute significantly to improved N1
and REM classification compared to baselines.

Figure 2: Confusion Matrix of the Proposed Model

Figure 3 plots the test accuracy over training epochs, showing stable convergence
due to the cosine annealing scheduler and Adam optimizer. The model reaches peak
performance around 400 epochs, with no signs of overfitting, as evidenced by
consistent validation performance (not shown for brevity).

The proposed model is compared with four state-of-the-art baseline models:
DeepSleepNet [10], SleepEEGNet [11], SeqSleepNet [12], and EOGNet [13]. These
models represent diverse approaches, including CNN-LSTM hybrids, sequence-to-
sequence architectures, hierarchical RNNs, and EOG-based methods. The results,
reported as mean ACC and Macro-F1 on the Sleep-EDF test set, are shown in Table
1.
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Figure 3: Test Accuracy vs. Training Epochs

Table 1. Comparative Results on Sleep-EDF Dataset

Model ACC(%) Macro-F1 (%)

Proposed Model 89.40 84.22

DeepSleepNet 82.00 76.90

SleepEEGNet 84.26 79.66

SeqSleepNet 87.10 83.30

EOGNet 76.30 69.30

The proposed model achieves the highest performance, with an ACC of 89.40%
and a Macro-F1 of 84.22%, outperforming all baselines. Compared to DeepSleepNet
(82.00% ACC), the proposed model benefits from multi-scale feature extraction and
continuous dynamic modeling via Neural ODE. SleepEEGNet (84.26% ACC) and
SeqSleepNet (87.10% ACC) perform well but are limited by simpler fusion strategies
and discrete-layer architectures. EOGNet, relying solely on EOG signals, yields the
lowest performance (76.30% ACC), underscoring the importance of multimodal
EEG-EOG fusion. The high Macro-F1 score of the proposed model indicates robust
performance across all classes, particularly for minority classes like N1, attributed to
the focal loss and cross-attention mechanism.
4.4 Ablation Study

To evaluate the contribution of each component, we conduct ablation studies by
removing or replacing key modules. The configurations tested are:
 w/o Neural ODE: Replacing the Neural ODE with an MLP results in a

significant performance drop (ACC: 80.02%, Macro-F1: 72.10%), particularly
for N3 and REM stages, where continuous temporal dynamics are critical.
This highlights the Neural ODE ’ s role in modeling non-linear stage
transitions.
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 w/o Cross-Attention: Feature concatenation leads to a 15.59% drop in ACC
(73.81%) and a 15.96% drop in Macro-F1 (68.26%), with notable degradation
in N1 and REM classification. This underscores the importance of dynamic
cross-modal interactions for effective EEG-EOG fusion.

 w/o Multi-Scale CNN: Using a single-scale CNN reduces ACC to 70.13% and
Macro-F1 to 62.73%, with increased errors in N1 and REM stages. The multi-
scale CNN is essential for capturing diverse temporal patterns like sleep
spindles and slow-wave activity.

 w/o Focal Loss: Cross-entropy loss yields an ACC of 83.79% and a Macro-F1
of 75.90%, with a significant decline in N1 classification performance. The
focal loss effectively addresses class imbalance, improving minority class
recognition.

The ablation study confirms that each component — multi-scale CNN, cross-
attention, Neural ODE, and focal loss — plays a critical role in achieving high
performance, with synergistic effects enhancing overall classification accuracy and
robustness.

Table 2: Ablation Study Results on Sleep-EDF Dataset

Configuration ACC(%) Macro-F1 (%)

Full Model 89.40 84.22

w/o Neural ODE (replaced with MLP) 80.02 72.10
w/o Cross-Attention (concatenation) 73.81 68.26
w/o Multi-Scale CNN (single-scale) 70.13 62.73

w/o Focal Loss (cross-entropy) 83.79 75.90

The confusion matrix of the ablation experiment is shown in Figure 4. Figure 4 (a)
shows the experimental result of replacing Neural ODE with MLP, Figure 4 (b)
shows the experimental result of replacing cross attention with feature concatenation,
Figure 4 (c) shows the experimental result of replacing multi-scale convolution with
single-scale convolution, and Figure 4 (d) shows the experimental result of replacing
focal loss with cross entropy loss.
4.5 Discussion

The proposed model excels in sleep stage classification by effectively tackling several
critical challenges. Its multi-scale CNN captures diverse temporal patterns, enhancing
the classification of stages with distinct frequency characteristics, such as N2 spindles
and N3 slow waves. Additionally, the Transformer-based cross-attention mechanism
facilitates multimodal fusion, improving EEG-EOG synergy, particularly for REM
and N1 stages, where eye movements and brain activity are closely correlated. The
model also employs Neural ODEs to capture continuous, non-linear stage transitions,
outperforming discrete-layer alternatives like MLPs. Furthermore, the use of focal
loss addresses class imbalance, significantly improving performance on minority
classes and achieving robust Macro-F1 scores.
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Figure 4: The confusion matrix of the ablation experiment

However, limitations exist. The computational complexity of the cross-attention
mechanism and Neural ODE’s numerical solver may hinder deployment on resource-
constrained devices, such as wearable sleep monitors. Additionally, signal noise and
artifacts can affect Neural ODE stability, necessitating robust preprocessing.

5 Conclusion

This paper presents a novel deep learning framework for automated sleep stage
classification, achieving an accuracy of 89.40% and a macro-averaged F1 score of
84.22% on the Sleep-EDF Database, surpassing baselines like DeepSleepNet (82.00%
ACC), SleepEEGNet (84.26% ACC), SeqSleepNet (87.10% ACC), and EOGNet
(76.30% ACC). The framework integrates a multi-scale CNN for temporal feature
extraction, a Transformer-based cross-attention mechanism for EEG-EOG fusion, a
Neural ODE for continuous temporal modeling, and a GRU classifier with focal loss
to address class imbalance, with ablation studies confirming each component’s critical
role (e.g., 19.27% ACC drop without multi-scale CNN). Notably, the model excels in
classifying minority classes like N1, offering significant potential for clinical
applications such as automated sleep disorder diagnosis and real-time monitoring
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