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 A B S T R A C T

Continual Text Classification (CTC) aims to continuously classify new text data over time while minimiz-
ing catastrophic forgetting of previously acquired knowledge. However, existing methods often focus on 
task-specific knowledge, overlooking the importance of shared, task-agnostic knowledge. Inspired by the 
complementary learning systems theory, which posits that humans learn continually through the interaction 
of two systems — the hippocampus, responsible for forming distinct representations of specific experiences, 
and the neocortex, which extracts more general and transferable representations from past experiences — we 
introduce Information-Theoretic Complementary Prompts (InfoComp), a novel approach for CTC. InfoComp 
explicitly learns two distinct prompt spaces: P(rivate)-Prompt and S(hared)-Prompt. These respectively encode 
task-specific and task-invariant knowledge, enabling models to sequentially learn classification tasks without 
relying on data replay. To promote more informative prompt learning, InfoComp uses an information-theoretic 
framework that maximizes mutual information between different parameters (or encoded representations). 
Within this framework, we design two novel loss functions: (1) to strengthen the accumulation of task-specific 
knowledge in P-Prompt, effectively mitigating catastrophic forgetting, and (2) to enhance the retention of task-
invariant knowledge in S-Prompt, improving forward knowledge transfer. Extensive experiments on diverse 
CTC benchmarks show that our approach outperforms previous state-of-the-art methods.
1. Introduction

Mastering a wide range of tasks, accumulating experience, and 
preventing forgetfulness are fundamental characteristics of human-
level intelligence. Despite the substantial advancements in Pretrained 
Language Models (PLMs) like BERT (Devlin, Chang, Lee, & Toutanova, 
2019), their performance still deteriorates when confronted with a 
sequence of downstream text classification tasks—a scenario known 
as Continual Text Classification (CTC) (de Masson D’Autume, Ruder, 
Kong, & Yogatama, 2019; Huang, Zhang, Chen, Wang, & Yang, 2021). 
CTC presents two key challenges: (1) Catastrophic Forgetting (CF), 
where models tend to lose previously acquired knowledge when learn-
ing new tasks (Goodfellow, Mirza, Xiao, Courville, & Bengio, 2013; 
McCloskey & Cohen, 1989; Robins, 1995), and (2) Forward Knowledge 
Transfer (FKT), which involves utilizing knowledge from earlier tasks 
to enhance the learning efficiency of subsequent tasks.

As the parameter scale of modern PLMs continues to expand, 
fine-tuning the entire model becomes increasingly impractical, which 
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has led to growing interest in Parameter-Efficient Fine-Tuning (PEFT) 
techniques. Among these, Prompt Tuning (PT) (Liu et al., 2022) has 
emerged as a prominent solution. PT works by learning a soft prompt 
and appending it to the input of PLMs, while keeping the model itself 
frozen (Liu et al., 2022). Previous research demonstrates that adapt-
ing PLMs to individual downstream tasks through prompt learning 
can achieve performance on par with full model fine-tuning, while 
using less than 0.01% of the parameters (Lester, Al-Rfou, & Con-
stant, 2021; Liu, Yuan, et al., 2023). Essentially, PT shifts the focus 
from modifying the model’s parameters to crafting prompts that guide 
the model’s learning for specific tasks. These prompts encapsulate 
task-specific knowledge, making PT more effective in utilizing frozen 
PLMs compared to traditional fine-tuning approaches. In the context 
of CTC, harnessing PT to acquire and retain knowledge holds great 
potential (Wang, Zhang, Lee, et al., 2022).

Recently, Progressive Prompt (ProgPrompt) has been introduced as 
an extension of PT for handling sequential downstream tasks, achieving 
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State-Of-The-Art (SOTA) performance on various CTC benchmarks (Raz-
daibiedina et al., 2023). ProgPrompt learns distinct prompts for each 
incoming task and reuses them during inference, effectively mitigating 
CF. Moreover, it facilitates FKT by incorporating previously learned 
prompts (which remain frozen) as inputs when learning a new task. 
However, ProgPrompt faces several significant limitations. First, it 
focuses exclusively on task-specific knowledge without leveraging the 
knowledge shared across tasks. Second, by directly concatenating all 
previously learned prompts for FKT, it inevitably introduces redundant 
information. Lastly, ProgPrompt maintains a continuously growing 
prompt list. As the number of tasks (𝑁) increases, the list grows at 
a rate of (𝑁), while transformer-based PLMs have a computational 
complexity of (𝑁2) (Vaswani et al., 2017). This results in escalating 
costs for both training and inference as the number of tasks increases.

To overcome these limitations, we propose Information-Theoretic 
Complementary Prompts (InfoComp), a method designed to effectively 
guide PLMs in learning sequential downstream text classification tasks. 
Drawing inspiration from complementary learning systems (Kumaran, 
Hassabis, & McClelland, 2016; McClelland, McNaughton, & O’Reilly, 
1995), we model our approach after the way humans engage in con-
tinual learning through the collaboration between the hippocampus 
and neocortex. The hippocampus excels at acquiring pattern-separated 
representations from specific experiences, while the neocortex captures 
more general and transferable representations from a sequence of 
past experiences (Arani, Sarfraz, & Zonooz, 2021; Pham, Liu, & Hoi, 
2021; Wang, Zhang, Ebrahimi, et al., 2022). Based on this analogy, 
InfoComp explicitly learns two distinct prompt spaces: P(rivate)-Prompt 
and S(hared)-Prompt. The P-Prompt encodes task-specific knowledge, 
while the S-Prompt captures task-invariant knowledge shared across 
all tasks. Instead of concatenating all previously learned P-Prompts, 
InfoComp utilizes the task-invariant knowledge accumulated in the S-
Prompt for FKT, thereby avoiding redundant information. When learn-
ing a new task, only the corresponding P-Prompt and the shared S-
Prompt are required, ensuring that the prompt length remains constant 
as the number of tasks (𝑁) increases.

To further improve the generation of more informative prompts, 
InfoComp frames soft PT as a process of maximizing Mutual Infor-
mation (MI) between prompts and other model parameters, as well 
as between different encoded representations. Within this framework, 
we introduce two novel loss functions based on MI: (1) Enhancing 
task-specific knowledge in P-Prompt: We maximize the MI between 
the P-Prompt and the task-specific classifier. Since the classifier typi-
cally encapsulates critical information from the downstream task (Wu 
et al., 2023), optimizing this MI allows the P-Prompt to capture richer 
task-relevant information, thereby more effectively mitigating CF. (2) 
Preserving task-invariant knowledge in S-Prompt: We maximize the 
MI between the encoded representations of the same input under the 
current and previous S-Prompt conditions. By doing so, we ensure bet-
ter preservation of task-invariant knowledge, facilitating more effective 
FKT and promoting continuity of shared knowledge across sequential 
tasks.

Our contributions can be summarized as follows:

• We introduce InfoComp for CTC, which integrates P-Prompt and 
S-Prompt to effectively capture task-specific and task-invariant 
knowledge, respectively. This method is easy to implement and 
eliminates the need for data replay, making it particularly well-
suited for real-world continual learning applications.

• We advance prompt learning from an information-theoretic per-
spective by proposing two novel loss functions: one to enhance 
the acquisition of task-specific knowledge in P-Prompt, and the 
other to preserve task-invariant knowledge in S-Prompt.

• Extensive experiments on diverse CTC benchmarks, including 
both standard setups and more challenging scenarios with longer 
task sequences, demonstrate that InfoComp significantly outper-
forms previous SOTA methods.
2 
2. Related work

2.1. Continual learning

Continual Learning (CL) aims to develop algorithms capable of 
progressively accumulating knowledge from a sequence of tasks (Wang, 
Zhang, Su, & Zhu, 2023). Traditional CL methods are generally di-
vided into three categories: replay-based, regularization-based, and 
architecture-based approaches. Replay-based methods utilize a rehearsal
buffer to retrain on a subset of previous examples (Chaudhry, Ran-
zato, Rohrbach, & Elhoseiny, 2018; Rebuffi, Kolesnikov, Sperl, & Lam-
pert, 2017). However, their effectiveness diminishes as the buffer 
size decreases (Cha, Lee, & Shin, 2021), and they are unsuitable 
for scenarios where data privacy is a concern (Shokri & Shmatikov, 
2015). Regularization-based methods address forgetting by impos-
ing constraints on network weights (Farajtabar, Azizan, Mott, & Li, 
2020; Huang et al., 2021; Kirkpatrick et al., 2017), intermediate 
features (Hou, Pan, Loy, Wang, & Lin, 2019), or output probabili-
ties (Li & Hoiem, 2017). While these approaches mitigate forgetting, 
they often incur additional storage costs for gradients or models from 
previous tasks, and they tend to struggle with long task sequences. 
Architecture-based methods, on the other hand, dynamically allocate 
isolated modules to store knowledge from different tasks, thereby 
minimizing interference (Rusu et al., 2016; Yoon, Yang, Lee, & Hwang, 
2018). However, this comes at the cost of significantly increasing the 
number of learnable parameters, making deployment more complex. 
Our approach is fundamentally architecture-based but stands out by 
requiring only a small set of parameters (i.e., prompts) to be learned. 
This design allows for high efficiency in handling long task sequences 
without the need to store data, gradients, or models from previous 
tasks.

2.2. Prompt tuning

PT (Gu, Han, Liu, & Huang, 2022; Karimi Mahabadi, Henderson, 
& Ruder, 2021; Li & Liang, 2021; Wang, Panda, et al., 2023) is a 
lightweight approach for adapting PLMs to specific downstream tasks. 
This method involves optimizing a sequence of virtual tokens, known as 
soft prompts, which are appended to the input of PLMs, while keeping 
the PLMs themselves frozen. Recently, PT has been extended to the CL 
domain Liang et al. (2023), Qin and Joty (2022), Razdaibiedina et al. 
(2023), Wang, Liu, et al. (2023), Wang, Zhang, Ebrahimi, et al. (2022), 
Wang, Zhang, Lee, et al. (2022), Zhu, Li, Mi, Zhu, and Huang (2022). 
Among these methods, ProgPrompt (Razdaibiedina et al., 2023) stands 
out, achieving SOTA performance across various CTC benchmarks. It 
mitigates CF by learning distinct prompts for each task and facilitates 
FKT by progressively appending previously learned prompts as inputs 
when acquiring new tasks.

However, ProgPrompt has limitations. It overlooks the shared knowl-
edge among tasks, and directly concatenating all learned prompts 
for FKT introduces redundant information. Furthermore, the growing 
prompt list increases computational overhead within the Transformer 
architecture. To address these issues, we propose InfoComp, which 
incorporates a S-Prompt to encode task-invariant knowledge shared 
across all tasks  Bai, Liu, and Li (2024), Liu, Xiong, Yuan, and Wang 
(2023), ensuring that only essential knowledge is utilized for FKT, 
thereby avoiding redundant information. In addition, the prompt list 
remains constant in length during CL, and our information theory 
framework promotes the learning of more informative prompts.

2.3. Information theory approaches in natural language processing

Information theory, pioneered by Claude Shannon in the mid-20th 
century, provides a mathematical framework for quantifying infor-
mation (Cover, 1999; Shannon, 1948, 1951). It has played a cru-
cial role in advancing various natural language processing tasks, in-
cluding language modeling, machine translation, and information re-
trieval (Brown, Della Pietra, Desouza, Lai, & Mercer, 1992; Manning 
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& Schutze, 1999; Steinborn, Dufter, Jabbar, & Schuetze, 2022; Tishby, 
Pereira, & Bialek, 2000). By measuring entropy and MI within lan-
guage data, researchers have developed models that effectively capture 
linguistic structures and semantic relationships.

In text memorization, information-theoretic metrics help evaluate a 
model’s ability to retain and reproduce textual information (Ju et al., 
2021; West, Holtzman, Buys, & Choi, 2019). This involves quantify-
ing the amount of preserved information during processing to pre-
vent overfitting or underfitting, ensuring a balanced trade-off between 
memorization and generalization.

In multimodal translation, where textual and visual data are inte-
grated, MI serves as a key criterion for aligning different modalities (Ji, 
Zhang, Zou, Hu, & Shen, 2022). By maximizing MI, models can better 
capture cross-modal dependencies, improving translation accuracy and 
robustness across multimodal inputs.

For model pretraining, InfoBERT (Wang et al., 2021) enhances 
BERT’s robustness by applying the information bottleneck principle, 
which filters out task-irrelevant information to improve generaliza-
tion and resilience against adversarial perturbations. Similarly, IN-
FOXLM (Chi et al., 2021) employs MI-based optimization to refine 
cross-lingual language modeling, promoting semantic alignment across 
languages and enhancing zero-shot transfer capabilities. Furthermore,
Wei, Tan, Li, Wang, and Huang (2024) introduces an evaluation metric 
based on the ‘‘effective rank’’ of model representations, drawing on 
insights from information theory and geometry to analyze and quantify 
how large language models eliminate redundant information through-
out the training process. This approach offers a comprehensive assess-
ment of model performance by capturing changes in representational 
efficiency before and after training.

For fine-tuning, Mahabadi, Belinkov, and Henderson (2021) intro-
duces an information bottleneck approach to low-resource fine-tuning, 
retaining task-relevant information while minimizing redundancy to 
enhance efficiency and generalization. Moreover, Sorensen et al. (2022) 
and Wu et al. (2023) propose information-theoretic prompt engineering 
methods, leveraging MI to optimize prompt selection and improve 
language model conditioning.

Building on these methods, we leverage MI to quantify the infor-
mation shared between two random variables, allowing us to compare 
prompts with other parameters as well as different encoded repre-
sentations. This methodology facilitates the generation of more infor-
mative prompts, leading to improved task-specific and task-invariant 
knowledge representation for CTC.

3. Preliminary

3.1. Problem formulation

Following ProgPrompt (Razdaibiedina et al., 2023), this work ex-
plores a CL scenario in which a PLM is required to handle a sequence 
of 𝑛 text classification tasks (𝑇1,… , 𝑇𝑛). Each task 𝑇𝑘 (𝑘 = 1,… , 𝑛) is 
composed of a set of i.i.d. training examples {𝑋𝑘

𝑖 , 𝑌
𝑘
𝑖 }

𝑚𝑘
𝑖=1, where 𝑋𝑘

𝑖  de-
notes the 𝑖th sequence of input text tokens, and 𝑌 𝑘

𝑖  is the corresponding 
label drawn from a predefined set 𝑘. The PLM, parameterized by 𝛩, 
is assumed to have access to task identity during both the training and 
inference phases.2 Unlike many previous approaches, we do not assume 
access to data from previous tasks (i.e., Rehearsal-free). Therefore, the 
PLM is limited to using data from task 𝑇𝑘 only while training on that 
task. As a result, the learning objective across all tasks is defined as: 

max
𝛩

𝑛
∑

𝑘=1

𝑚𝑘
∑

𝑖=1
log 𝑝𝛩(𝑌 𝑘

𝑖 |𝑋
𝑘
𝑖 ) (1)

2 We focus on the task-incremental setup, where task identity is generally 
assumed to be known during inference (Razdaibiedina et al., 2023).
3 
The simplest method for CL is finetuning, where the PLM sequen-
tially minimizes the loss for each task 𝑇𝑘, 𝑘 ∈ {1..𝑛}, by updating all its 
parameters 𝛩 (including the parameters of PLM and classifier): 

𝑘(𝛩) = −
𝑚𝑘
∑

𝑖=1
log 𝑝(𝑌 𝑘

𝑖 |𝑋
𝑘
𝑖 , 𝛩) (2)

While continual finetuning facilitates FKT to future tasks, it also 
leads to CF, where performance on previously learned tasks deteriorates 
after learning new ones, ultimately resulting in increased generaliza-
tion loss (de Masson D’Autume et al., 2019; Kirkpatrick et al., 2017; 
McCloskey & Cohen, 1989).

3.2. ProgPrompt

To remedy this defect, ProgPrompt adopts a strategy of learning 
distinct prompts for each task to mitigate CF and facilitates FKT by 
progressively appending previous prompts (frozen) as inputs when 
learning a new task (Razdaibiedina et al., 2023). The training objective 
for the 𝑘th task 𝑇𝑘 in Eq.  (2) is therefore modified as: 

𝑘(𝜃𝑃𝑘 , 𝜃
head
𝑘 ) = −

𝑚𝑘
∑

𝑖=1
log 𝑝(𝑌 𝑘

𝑖 |[𝑃𝑘,… , 𝑃1, 𝑋
𝑘
𝑖 ], 𝜃, 𝜃

head
𝑘 , 𝜃𝑃1 ,… , 𝜃𝑃𝑘 ), (3)

during training, the parameters 𝜃 of the PLM remain fixed, while only 
the current prompt-specific parameters 𝜃𝑃𝑘  and the current classifier 
parameters 𝜃head𝑘  are updated for task 𝑇𝑘; they are frozen once the task 
𝑇𝑘 is completed.

It becomes apparent from Eq.  (3) that ProgPrompt faces several 
limitations. First, it emphasizes task-specific knowledge while failing 
to exploit shared knowledge across different tasks. Second, its ap-
proach of concatenating all previously learned prompts to achieve FKT 
results in the inclusion of redundant information, which can reduce 
efficiency. Additionally, ProgPrompt continuously expands the list of 
prompts as new tasks are introduced. With the number of tasks (𝑁) 
growing, the size of the prompt list increases linearly, at a rate of (𝑁). 
Given that transformer-based PLMs have a computational complexity of 
(𝑁2) (Vaswani et al., 2017), this leads to rising costs in both training 
and inference as the number of tasks accumulates. Consequently, the 
approach becomes less scalable over time.

4. Method

To address the aforementioned limitations, we introduce the In-
foComp method, which combines a pair of complementary prompts 
with an information-theoretic framework. This approach is designed 
to efficiently guide PLMs in learning a sequence of downstream text 
classification tasks, enabling better performance in CL scenarios.

4.1. Complementary prompts

The complementary learning systems theory (Kumaran et al., 2016; 
McClelland et al., 1995) in cognitive science suggests that humans 
rely on the interaction between the hippocampus and the neocortex to 
achieve CL. The hippocampus specializes in forming pattern-separated 
representations from specific, individual experiences, while the neocor-
tex is responsible for extracting more general, transferable knowledge 
from a sequence of past experiences (Arani et al., 2021; Pham et al., 
2021; Wang, Zhang, Ebrahimi, et al., 2022). This collaboration en-
ables humans to effectively learn and adapt to new information while 
retaining previously acquired knowledge.

Building on this theory, InfoComp introduces a pair of comple-
mentary prompts: P-Prompt and S-Prompt, as illustrated in Fig.  1. 
For each task, a unique P-Prompt is learned to encode task-specific 
knowledge, helping to prevent interference between tasks and mitigate 
CF. Meanwhile, a shared S-Prompt is utilized across all tasks to capture 
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Fig. 1. InfoComp learns two distinct prompt types: P-Prompt and S-Prompt. The P-Prompt encodes task-specific knowledge to reduce CF, while the S-Prompt captures task-invariant 
knowledge to enhance FKT. ‘‘Trm’’ represents the Transformer encoder block within the PLM.
task-invariant knowledge, facilitating FKT. The training objective for 
the 𝑘th task 𝑇𝑘 is formulated as follows: 

𝑘(𝜃𝑃𝑘 , 𝜃𝑆 , 𝜃
head
𝑘 ) = −

𝑚𝑘
∑

𝑖=1
log 𝑝(𝑌 𝑘

𝑖 |[𝑃𝑘, 𝑆,𝑋
𝑘
𝑖 ], 𝜃, 𝜃

head
𝑘 , 𝜃𝑃𝑘 , 𝜃𝑆 ), (4)

where 𝜃𝑃𝑘  represents the parameters associated with the task-specific 
P-Prompt 𝑃𝑘, while 𝜃𝑆 denotes the parameters linked to the S-Prompt 
𝑆.

In contrast to ProgPrompt as defined in Eq.  (3), InfoComp in Eq.  (4) 
introduces an additional S-Prompt to capture task-invariant knowledge 
shared across all tasks. Rather than concatenating all previously learned 
P-Prompts for FKT, InfoComp leverages the generalized knowledge 
stored in the S-Prompt, effectively reducing redundant information. 
When training on a new task, only the corresponding P-Prompt and 
the shared S-Prompt are used, ensuring that the total prompt length 
remains fixed, even as the number of tasks (𝑁) increases. This design 
keeps the model efficient and scalable, regardless of the number of tasks 
involved.

4.2. Information-theoretic framework

To further enhance the learning of more informative prompts, In-
foComp introduces an information-theoretic framework, framing PT 
as a process of maximizing MI between prompts and other model 
parameters, as well as across different encoded representations. This 
framework leads to the design of two novel MI-based training objec-
tives: one aimed at enhancing task-specific knowledge in P-Prompt, and 
another focused on preserving task-invariant knowledge in S-Prompt. 
These objectives are intended to balance the integration of task-relevant 
insights with the retention of generalized knowledge.
Enhancing task-specific knowledge in P-prompt. Recent research has indi-
cated that directly optimizing prompts alone is insufficient for encod-
ing sufficient task-specific information (Wu et al., 2023). In contrast, 
task-specific classifiers are typically enriched with information from 
downstream tasks, and their parameters tend to adapt to task-specific 
knowledge more efficiently since they are closely aligned with the 
classification objectives. To explicitly enhance the task-specific infor-
mation within the P-Prompt, we maximize the mutual information 
𝐼(𝜃𝑃𝑘 ; 𝜃

head
𝑘 |𝑋𝑘

𝑖 ) between the P-Prompt parameters 𝜃𝑃𝑘  and the classifier 
parameters 𝜃head𝑘 , thereby more effectively mitigating CF.

Given the simplicity of vector dot product calculations and their 
gradient-friendly nature, we directly maximize the inner product be-
tween the P-Prompt parameters 𝜃𝑃𝑘  and the classifier parameters 𝜃head𝑘 . 
This guides the model toward learning representations that are more 
closely related. By doing so, we effectively enhance the MI between 
these parameters. The process can be formalized as follows: 

p-info𝑘 (𝜃𝑃𝑘 , 𝜃
head
𝑘 ) = −𝜃head𝑘

𝑇𝑊1𝜃
𝑇
𝑃𝑘
, (5)

where 𝑊  is a trainable transformation matrix.
1

4 
Fig. 2. Alleviating the issue of forgetting shared knowledge across tasks by maximizing 
the MI 𝐼(𝑉 𝑘

𝑖 , 𝑉
𝑘′
𝑖 ).

Preserving task-invariant knowledge in S-prompt. Since the S-Prompt par-
ticipates in the optimization of every task, it is inevitably affected 
by task-specific updates. To mitigate this influence and ensure the S-
Prompt captures and retains as much task-agnostic, general knowledge 
as possible, we maximize the MI between the encoded representations 
of the same input using both the current and previous S-Prompt states. 
This strategy ensures better preservation of task-invariant knowledge, 
enhances FKT, and supports the continuity of shared knowledge across 
sequential tasks.

Let the PLM encoder be denoted as 𝐹 (⋅). Given an input pair (𝑋𝑘
𝑖 , 𝑌

𝑘
𝑖 )

from the current task 𝑇𝑘, we define 𝑉 𝑘
𝑖 = 𝐹 (𝑋𝑘

𝑖 , 𝑆) as the representation 
generated using the current S-Prompt 𝑆, and 𝑉 𝑘′

𝑖 = 𝐹 (𝑋𝑘
𝑖 , 𝑆

′) as 
the representation produced by the frozen S-Prompt 𝑆′, which was 
the S-Prompt at the end of the previous task optimization. Consider 
a Markov chain 𝑉 𝑘′

𝑖 ← 𝑋𝑘
𝑖 → 𝑉 𝑘

𝑖 → 𝑌 𝑘
𝑖 . From an information-

theoretic perspective, optimizing for each task involves maximizing 
the MI 𝐼(𝑉 𝑘

𝑖 , 𝑌
𝑘
𝑖 ). As illustrated in Fig.  2, this process increases the 

amount of task-specific knowledge (represented by the blue arrow), 
while reducing the shared common knowledge across tasks. To address 
the issue of forgetting shared knowledge within the S-Prompt, we need 
to introduce an explicit constraint by maximizing the MI 𝐼(𝑉 𝑘

𝑖 , 𝑉
𝑘′
𝑖 ), 

following the direction of the red arrow.
Inspired by SimSiam (Chen & He, 2021), as shown in Fig.  3(a), it 

is a positive-only contrastive learning method that captures invariant 
features from positive sample pairs. Its training objective is formalized 
as follows: 
SimSiam = −(𝑊𝑝𝑧1)𝑇 𝑧2 = −𝑝𝑇1 𝑧2, (6)

where 𝑊𝑝 is a trainable matrix designed to capture a shared feature 
embedding space between different views of positive samples (For 
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Fig. 3. (a) SimSiam for the positive sample pair. (b) SimSiam for the prompt-augmented positive sample pair.
example, as shown in Fig.  3(a), it depicts different views of the same 
cat.).

By analogy, we can view 𝑋1 = (𝑋𝑘
𝑖 , 𝑆) and 𝑋2 = (𝑋𝑘

𝑖 , 𝑆
′) as a pair of 

positive sample views of the same input 𝑋𝑘
𝑖  under different S-Prompt 

conditions from different tasks, as shown in Fig.  3(b). To increase the 
MI 𝐼(𝑉 𝑘

𝑖 , 𝑉
𝑘′
𝑖 ), we can adopt the SimSiam training objective, bringing 

this pair of positive samples closer in the embedding space to enhance 
the interdependence between 𝑉 𝑘

𝑖  and 𝑉 𝑘′
𝑖 . This can be formalized as 

follows: 
s-info𝑘 (𝜃𝑆 ) = −(𝑊𝑞𝑉

𝑘
𝑖 )

𝑇 𝑉 𝑘′
𝑖 = −𝑄𝑘

𝑖
𝑇 𝑉 𝑘′

𝑖 , (7)

where 𝑊𝑞 is a trainable matrix designed to capture the shared subspace 
between tasks. The parameters of the current S-Prompt, denoted as 𝜃𝑆 , 
are optimized to generate an embedding space that aligns with the S-
Prompt from the previous task. This guides the current S-Prompt to 
expand the shared subspace with prior tasks, thereby enhancing the 
retention of previously learned general knowledge.

4.3. Overall training objective

Finally, the overall training objective function of our proposed 
InfoComp method is formulated as follows: 
overall𝑘 = 𝑘 + 𝜆1

p-info
𝑘 + 𝜆2s-info𝑘 , (8)

where 𝜆1 and 𝜆2 are hyperparameters that balance the importance of 
the loss terms.

5. Experimental settings

5.1. Datasets

Standard CTC benchmark. Building on the methodology outlined in 
ProgPrompt (Razdaibiedina et al., 2023), we initially assess our pro-
posed approach using the widely recognized CTC benchmark, which 
comprises five text classification datasets introduced by Zhang, Zhao, 
and LeCun (2015): AG News, Amazon reviews, DBpedia, Yelp re-
views, and Yahoo Answers. In line with earlier CTC studies such as 
IDBR (Huang et al., 2021) and MBPA++ (de Masson D’Autume et al., 
2019), we conduct evaluations across four distinct task orderings of 
these five datasets. The training and testing sets are identical to those 
used in IDBR (Huang et al., 2021) and MBPA++ (de Masson D’Autume 
et al., 2019), comprising 115,000 training and 7,600 testing instances 
per task. Following the approach in Huang et al. (2021), for each task 
we randomly withhold 500 samples per class from the training set for 
validation, applying early stopping based on validation accuracy.
5 
Table 1
The description of the 15 datasets utilized in our CTC experiments. ‘‘Acc." stands for 
accuracy. The first five tasks are part of the standard CTC benchmark, while the 
remaining tasks are included in our long-sequence experiments.
 Name Alias Source #.Class Metric 
 1. AG News ag Standard 4 Acc.  
 2. Amazon reviews amazon Standard 5 Acc.  
 3. DBpedia dbpedia Standard 14 Acc.  
 4. Yelp reviews yelp Standard 5 Acc.  
 5. Yahoo Answers yahoo Standard 10 Acc.  
 6. MNLI mnli GLUE 3 Acc.  
 7. QQP qqp GLUE 2 F1  
 8. RTE rte GLUE 2 Acc.  
 9. SST2 sst2 GLUE 2 Acc.  
 10. WiC wic SuperGLUE 2 Acc.  
 11. CB cb SuperGLUE 3 Acc.  
 12. COPA copa SuperGLUE 2 Acc.  
 13. MultiRC multirc SuperGLUE 2 Acc.  
 14. BoolQ boolq SuperGLUE 2 Acc.  
 15. IMDB movie imdb Other 2 Acc.  

Long-sequence CTC benchmark. A more realistic CTC scenario involves 
longer task sequences with a larger number of tasks. To address this, we 
also assess InfoComp’s performance on a more challenging benchmark 
comprising 15 text classification tasks (Razdaibiedina et al., 2023). 
This benchmark includes the five datasets from the standard CTC 
benchmark, along with four tasks from the GLUE benchmark (MNLI, 
QQP, RTE, SST2) (Wang, 2018), five tasks from the SuperGLUE bench-
mark (Wang et al., 2019) (WiC, CB, COPA, MultiRC, BoolQ), and 
the IMDB movie reviews dataset (Maas et al., 2011). In line with 
ProgPrompt (Razdaibiedina et al., 2023), we evaluate performance 
across varying dataset sizes by creating three versions of each dataset, 
containing 20, 200, and 1000 training examples per class, and report 
test results for each case. Consistent with the approach in Huang et al. 
(2021), for each task we randomly set aside 500 samples per class 
from the training data for validation, using early stopping based on 
validation accuracy.

Table  1 provides a detailed overview of the 15 datasets employed 
in our CTC experiments. These datasets are drawn from the standard 
CTC benchmark (Zhang et al., 2015), the GLUE (Wang, 2018) and 
SuperGLUE (Wang et al., 2019) benchmarks, with the addition of 
the IMDB movie reviews dataset. The task orders used in our CTC 
experiments are presented in Table  2.
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Table 2
Seven distinct task sequence orders were used for the CTC experiments. Orders 1 
through 4 correspond to the standard CTC benchmark, while Orders 5 through 7 
represent long-sequence settings involving 15 tasks.
 Order Task Sequence  
 1 ag ˃ yelp ˃ amazon ˃ yahoo ˃ db  
 2 yelp ˃ yahoo ˃ amazon ˃ db ˃ ag  
 3 db ˃ yahoo ˃ ag ˃ amazon ˃ yelp  
 4 yelp ˃ ag ˃ db ˃ amazon ˃ yahoo  
 5 mnli ˃ cb ˃ wic ˃ copa ˃ qqp ˃ boolq ˃ rte ˃ imdb ˃

yelp ˃ amazon ˃ sst2 ˃ dbpedia ˃ ag ˃ multirc ˃ yahoo
 

 6 multirc ˃ boolq ˃ wic ˃ mnli ˃ cb ˃ copa ˃ qqp ˃ rte ˃
imdb ˃ sst2 ˃ dbpedia ˃ ag ˃ yelp ˃ amazon ˃ yahoo

 

 7 yelp ˃ amazon ˃ mnli ˃ cb ˃ copa ˃ qqp ˃ rte ˃ imdb ˃
sst2 ˃ dbpedia ˃ ag ˃ yahoo ˃ multirc ˃ boolq ˃ wic

 

5.2. Baselines

We compare InfoComp against eight baseline methods3:

• Finetune (de Masson D’Autume et al., 2019; Huang et al., 2021; 
Wang, Mehta, Poczós, & Carbonell, 2020): all model parameters 
are trained sequentially on a series of tasks, without applying any 
regularization constraints or replaying samples from earlier tasks.

• Experience Replay: the entire model is fine-tuned using a mem-
ory buffer, with samples from previous tasks replayed during the 
learning of new tasks to mitigate forgetting.

• A-GEM (Chaudhry et al., 2018): store examples from previous 
tasks and limit the gradients used for updating the model on new 
tasks by referencing the retrieved examples.

• MBPA++ (de Masson D’Autume et al., 2019): enhance BERT with 
an episodic memory that stores all encountered examples. Replay 
occurs during training, while local adaptation is applied during 
testing.

• IDBR (Huang et al., 2021): this BERT-specific method contin-
uously trains the entire model by incorporating experience re-
play along with a regularization loss, which separates sentence 
representations into task-specific and task-generic components.

• Per-task Prompts (Lester et al., 2021): a separate soft prompt 
is trained for each task, while the original model’s parameters 
remain unchanged. This method effectively avoids CF by ensur-
ing that task-specific parameters are preserved as new tasks are 
introduced. However, it lacks FKT, as shared knowledge across 
tasks is not leveraged.

• Prompt Tuning (Lester et al., 2021; Qin & Joty, 2022): only a 
shared soft prompt is trained sequentially across all tasks, with 
the original model parameters kept fixed throughout.

• InfoCL (Song et al., 2023): a novel replay-based CTC approach 
that leverages fast-slow and current-past contrastive learning to 
enhance the representation of diverse knowledge.

• Q-Tuning (Guo et al., 2024): incorporates a prompt queue along-
side an adaptive knowledge aggregation low-rank matrix, which 
is optimized to assess the significance of stored prompts and 
improve FKT.

• SLM (Bohao, Tian, Liu, Yang, & Jia, 2024): offers a model-
agnostic framework for the scalable acquisition of knowledge and 
skills. It integrates vector space retrieval into the language model 
and features two key components: joint adaptive re-parameteri-
zation and dynamic retrieval of task-specific knowledge.

• ProgPrompt (Razdaibiedina et al., 2023): it learns unique
prompts for each new task and reuses them during inference, 

3 Consistent with (Huang et al., 2021; Razdaibiedina et al., 2023), in all 
replay methods, 1% of samples per class are stored (with a minimum of 1 
sample for smaller datasets).
6 
Table 3
Summary of results on the standard CTC benchmark. The highest result is highlighted 
in red, while the second-highest result is shown in blue. A † marker indicates a 
statistically significant result with a 𝑝-value of < 0.05 in comparison to ProgPrompt 
(Razdaibiedina et al., 2023) and SLM (Bohao et al., 2024). The column ‘‘ER" specifies 
whether experience replay is required by each baseline. Baselines labeled with ♢

maintain a frozen PLM, while the remaining methods train the entire model. Those 
marked with ∗ are derived from our re-implementation using their open-source code, 
whereas the other baseline results are directly cited from ProgPrompt (Razdaibiedina 
et al., 2023) or their respective original papers.
 Baseline ER Order  
 1 2 3 4 Avg.  
 Finetune 14.8 27.8 26.7 4.5 18.4  
 Experience Replay ✓ 67.2 64.7 64.7 44.6 57.8  
 A-GEM ✓ 70.6 65.9 67.5 63.6 66.9  
 MBPA++ ✓ 70.8 70.9 70.2 70.7 70.6  
 IDBR ✓ 75.9 76.2 76.4 76.7 76.3  
 InfoCL∗ ✓ 76.5 76.8 70.0 76.3 74.9  
 ProgPrompt♢ 78.0 77.7 77.9 77.9 77.9  
 ProgPrompt♢,∗ 78.0 77.8 77.8 77.8 77.9  
 Q-Tuning♢ 78.5 78.3 78.3 78.4 78.4  
 SLM♢ 79.2 78.8 79.0 79.2 79.1  
 InfoComp (Ours)♢ 79.6† 80.1† 79.9† 80.2† 80.0† 
 Improve ⇑0.4 ⇑1.3 ⇑0.9 ⇑1.0 ⇑0.9  

effectively reducing CF. Additionally, it enables FKT by using 
previously learned, frozen prompts as inputs when training on 
a new task.

5.3. Evaluation metric

Following ProgPrompt (Razdaibiedina et al., 2023), we use average 
accuracy on the test set as our evaluation metric, representing the 
overall average accuracy across all tasks after training on the final task. 
Additionally, for certain task sequences, we include detailed task-wise 
accuracy plots. These plots capture the average accuracy of all tasks 
completed up to that point, measured after each task is trained. To 
assess the statistical significance of our improvements, we conduct a 
paired t-test at a significance level of 0.05 (Koehn, 2004).

5.4. Implementation details

For consistency with prior works, including IDBR (Huang et al., 
2021), MBPA++ (de Masson D’Autume et al., 2019), and ProgPrompt
(Razdaibiedina et al., 2023), we adopt the pre-trained bert-base-uncased
model as the PLM backbone. Our implementation relies on PyTorch 
(Paszke et al., 2019) along with the HuggingFace Transformers library 
(Wolf, 2019).

For the standard CTC benchmark, we use the official datasets 
from (Zhang et al., 2015),4 consistent with (de Masson D’Autume et al., 
2019; Zhang et al., 2015). Additionally, we obtain data for GLUE 
tasks (Wang, 2018), SuperGLUE tasks (Wang et al., 2019), and the 
IMDB movie reviews dataset (Maas et al., 2011) using the HuggingFace 
Datasets library,5 leveraging these datasets for long-sequence CTC 
experiments. In line with previous studies (de Masson D’Autume et al., 
2019; Rao et al., 2019), we repurpose each dataset’s validation set as 
the test set (where test data is unavailable) and reserve 500 samples 
from the training set to create the validation set.

We employ the Adam optimizer (Kingma, 2014) for all experiments, 
setting a batch size of 8 and a learning rate of 1𝑒-4. Prompts are trained 
for between 40 and 300 epochs, based on the dataset size. Specifically, 
for the standard CTC benchmark, we set the epoch count to 40. For the 
long-sequence CTC benchmark, the epoch count is set to 300, 150, and 

4 http://goo.gl/JyCnZq
5 https://github.com/huggingface/datasets

http://goo.gl/JyCnZq
https://github.com/huggingface/datasets
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Fig. 4. Comparison of task-wise accuracy for the task sequences Order3 and Order4. Our InfoComp consistently outperforms ProgPrompt (Razdaibiedina et al., 2023), across all 
task-wise evaluations.
40 when each class contains 20, 200, and 1000 samples, respectively. 
The final prompts are selected based on the best validation set scores 
obtained from the prompt checkpoints. Following (Lester et al., 2021), 
prompts are initialized with randomly sampled tokens. In all experi-
ments, we configure the P-Prompt length, G-Prompt length, and the 
loss coefficients 𝜆1 and 𝜆2 to be 35, 5, 0.05, and 0.1, respectively6. All 
of our results are the average of 3 runs. For all other baselines, we use 
hyperparameters outlined in their original papers.

6. Experimental results

6.1. Standard CTC benchmark

6.1.1. Main results
Table  3 presents a comparison of InfoComp’s performance against 

four different task sequences and existing CTC methods, including the 
previous SOTA approaches, ProgPrompt (Razdaibiedina et al., 2023) 
and SLM (Bohao et al., 2024). Overall, InfoComp enhances CTC per-
formance, achieving scores of 79.6, 80.1, 79.9, and 80.2 across the 
four sequences, with an average score of 80.0. This represents an 
improvement of 1.6, 2.3, 2.0, and 2.3 over ProgPrompt, and 0.4, 1.3, 
0.9, and 1.0 over SLM, respectively. Furthermore, unlike traditional 
CTC methods such as IDBR (Huang et al., 2021), MBPA++ (de Mas-
son D’Autume et al., 2019), and InfoCL (Song et al., 2023), InfoComp 
does not require the storage of data from previous tasks for future 
replay. These findings highlight the effectiveness of InfoComp.

6.1.2. Task-wise comparisons
Fig.  4 illustrates the task-wise comparison results that compre-

hensively assess the effectiveness of our InfoComp method in CTC 
scenarios. The findings reveal that InfoComp consistently surpasses 
ProgPrompt (Razdaibiedina et al., 2023), across all task-wise com-
parisons. This enhanced performance is particularly pronounced in 
the experimental setups for task sequences Order3 and Order4. These 
results emphasize the robustness of InfoComp in sustaining high per-
formance and adaptability while tackling new tasks throughout the 
learning process. The marked improvement over ProgPrompt highlights 
InfoComp’s potential to set a new benchmark for CTC tasks, particularly 
in complex, real-world data environments.

6.2. Long-sequence CTC benchmark

Table  4 presents a comparison of various common CTC approaches, 
including the SOTA method ProgPrompt (Razdaibiedina et al., 2023), 
within the context of sequence continual learning involving 15 tasks. 
We provide averaged results across three task orders (5, 6, and 7) and 

6 The prompt length refers to the sequence length of tokens in a prompt.
7 
include the complete non-averaged results for each order. To examine 
the impact of limited data settings, we conduct training using different 
dataset sizes of 20, 200, and 1000 samples per class. Our method, 
InfoComp, consistently outperforms all competing approaches across 
these varying data constraints, achieving average scores of 57.9, 69.6, 
and 71.2 for the few-shot scenarios of 20, 200, and 1000 samples per 
class, respectively. This results in improvements of 3.7, 2.7, and 1.9 
over the previous SOTA method, ProgPrompt.

6.3. Ablation study

This subsection assesses the effectiveness of the individual compo-
nents of our InfoComp method in the task sequences Order6 and Order7 
through ablation studies, as illustrated in Table  5. When we remove P-
Prompt and S-Prompt from InfoComp, it indicates that only a shared 
soft prompt is trained sequentially across all tasks, or that a separate 
soft prompt is trained for each individual task. The first approach 
neglects task-specific knowledge, rendering it susceptible to CF for 
prior tasks, while the second approach overlooks shared knowledge 
among tasks, which can impede FKT to some extent. Both strategies 
result in a significant drop in performance compared to the complete 
InfoComp method, highlighting that effectively addressing CTC tasks 
requires simultaneously capturing both task-specific and task-invariant 
knowledge.

When we remove p-info𝑘  and s-info𝑘  from the InfoComp method, it 
indicates that the information-theoretic framework is not utilized to 
support the learning of prompts during training, which in turn affects 
the generation of more informative prompts. The individual removal 
of p-info𝑘  compromises the enhancement of task-specific knowledge 
acquisition in P-Prompt, while the exclusion of s-info𝑘  undermines the 
preservation of task-invariant knowledge in S-Prompt. As a result, these 
variations lead to a significant decline in CTC performance, underscor-
ing the importance of each component in our InfoComp method for 
effectively addressing CTC challenges.

7. Conclusion

In this paper, we introduced InfoComp, a novel approach to CTC 
that effectively balances the learning of task-specific and task-invariant 
knowledge. InfoComp utilizes two distinct prompt spaces, P-Prompt 
and S-Prompt, enabling models to sequentially acquire new classi-
fication tasks while minimizing CF. Furthermore, by leveraging an 
information-theoretic framework, our designed loss functions signif-
icantly enhance the accumulation of task-specific knowledge in P-
Prompt and improve the retention of task-invariant knowledge in S-
Prompt. This reduces CF and fosters better FKT. Extensive experiments 
across various CTC benchmarks, including standard setups and more 
challenging scenarios with longer task sequences, demonstrated that In-
foComp consistently outperforms existing SOTA methods, underscoring 
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Table 4
Overview of results on the long-sequence CTC benchmark. The top result is highlighted in red, while the second-best is marked in blue. † denotes statistical significance with 
a 𝑝-value less than 0.05 compared to ProgPrompt (Razdaibiedina et al., 2023). Results are reported across different data limits: 20, 200, and 1000 samples per class. Baselines 
marked with ♢ indicate only soft prompts are trained while the PLM remains frozen, whereas other methods involve training the entire model. Results marked with ∗ come from 
our re-implementation, while other baseline results are directly sourced from ProgPrompt (Razdaibiedina et al., 2023).
 Baseline ↓ Order 5 Order 6 Order 7 Avg.

 Num. samples → 20 200 1000 20 200 1000 20 200 1000 20 200 1000  
 Finetune 29.9 43.4 40.9 30.5 42.0 42.5 33.6 41.9 41.8 31.3 42.4 41.7  
 Prompt Tuning♢ – – – – – – – – – 47.6 57.2 59.5  
 Experience Replay 34.9 46.3 51.0 39.3 48.1 51.5 34.9 46.5 46.3 36.4 47.0 49.6  
 Per-task Prompts♢ 50.6 62.4 67.2 50.6 62.4 67.2 50.6 62.4 67.2 50.6 62.4 67.2  
 IDBR 39.7 48.4 52.3 37.9 46.6 54.1 32.9 48.8 50.1 36.8 47.9 52.2  
 ProgPrompt♢ 55.3 67.9 68.9 53.3 65.8 70.0 51.9 66.9 69.0 53.5 66.9 69.3  
 ProgPrompt♢,∗ 51.4 66.8 68.4 54.2 66.9 67.5 57.1 66.4 68.7 54.2 66.7 68.2  
 InfoComp (Ours)♢ 56.4† 69.6† 70.4† 57.7† 69.2† 72.4† 59.7† 69.9† 70.8† 57.9† 69.6† 71.2† 
 Improve ⇑1.1 ⇑1.7 ⇑1.5 ⇑3.5 ⇑2.3 ⇑2.4 ⇑2.6 ⇑3.0 ⇑1.8 ⇑3.7 ⇑2.7 ⇑1.9  
Table 5
The ablation study of our InfoComp under the task sequences Order6 and Order7. In comparison to our InfoComp method, all ablation variants 
show a significant decline in CTC performance, confirming the necessity of each component for collaboratively addressing CTC. Bold denotes 
the best results.
 Variants Order6 Order7

 20 200 1000 20 200 1000 
 InfoComp w/o P-Prompt 48.2 57.9 60.3 49.1 58.2 61.1  
 InfoComp w/o S-Prompt 51.2 63.0 68.7 52.4 64.1 68.1  
 InfoComp w/o p-info𝑘 &s-info𝑘 54.4 65.7 70.2 57.3 66.1 68.8  
 InfoComp w/o p-info𝑘  in Eq.  (5) 56.5 67.6 71.3 59.0 68.6 70.0  
 InfoComp w/o s-info𝑘  in Eq.  (7) 55.6 67.0 70.7 58.2 67.4 69.5  
 InfoComp (Ours) 57.7 69.2 72.4 59.7 69.9 70.8  
its effectiveness in addressing the challenges of continual learning. Fu-
ture work could investigate the application of our model-agnostic Info-
Comp method with additional PLMs beyond BERT, allowing for further 
validation of its efficacy across a broader range of CTC benchmarks.
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