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ABSTRACT

Recent advances in deep learning have enabled effective interpretation of neural activity patterns
from electroencephalogram signals; however, challenges persist in invasive brain signals for cross-
day neural decoding and simulation tasks. The inherent non-stationarity of neural dynamics and
representational drift across recording sessions fundamentally limit the generalization capabilities
of existing approaches. We present AlignNet, a novel framework that establishes cross-modal
alignment between spiking patterns and behavioral semantics through U-based representation
learning. Our architecture employs hybrid SNN-ANN autoencoders to encode neural spikes and
behavior into a shared latent space, where the neural spike autoencoder incorporates multiple
neuron nodes following convolution layers, and the behavior autoencoder comprises standard
convolution layers. These two representations are optimized through contrastive objectives to
achieve session-invariant feature learning. To address cross-day adaptation challenges, we
introduce a pretraining strategy leveraging multi-session single monkey experiment data, followed
by task-specific fine-tuning for neural decoding and simulation. Comprehensive evaluations
demonstrate that AlignNet achieves superior performance under both single-day and cross-day
conditions; meanwhile, our pretrained model effectively executes decoding and simulation tasks
after fine-tuning. The hybrid SNN-ANN representations exhibit temporal consistency across
multi-day recording spikes while retaining behavioral semantics, thereby advancing cross-day
neural interface applications.
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1 INTRODUCTION

In the field of neuroscience, the decoding of neural data has been advanced by deep learning techniques.
Animal experiments provide compelling evidence that behavioral states are strongly correlated with
specific patterns of brain activity. Research demonstrates that dynamic firing-rate modulations critically
influence both the initiation and suppression of motor behaviors (Falasconi et al., [2025). Deciphering the
complex information embedded in neural signals represents a fundamental challenge at the intersection of
neuroscience and computational science. To address this challenge, novel computational frameworks have
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been developed. Azabou et al. (Azabou et al., 2023) introduce POYO, a transformer-based architecture
that tokenizes neural spike data and utilizes cross-attention to model population-level dynamics across
extensive neural recordings. Researchers (Vermani et al., 2023) propose an unsupervised alignment method
designed to leverage shared latent dynamics, facilitating the transfer and reuse of pre-trained generative
models across diverse neural datasets.

However, neural decoding encounters challenges in cross-day sessions. Neural non-stationarity
(Gowreesunker et al.,|2011) and factors such as postoperative inflammation (Giunta et al.,|2024)induce drift
in the behavior-neural signal relationship, compromising decoding stability. To address it, cross-day neural
decoding frameworks have been developed. For instance, the Neural Speech Decoding Framework (Chen
et al.,[2024b)) employs pretrained synthesizers to map neural features to speech waveforms, while domain-
invariant representation learning aligns feature distributions across sessions. Neural Encoding Dynamic
Sampling (NEDS) (Du et al., 2023) constructs a meta-representation space that captures stable neural
dynamics. It employs central kernel alignment (CKA) to quantify cross-day similarity and dynamically
calibrates decoder parameters.

Beyond mapping neural data to behavioral outputs, simulating biologically realistic neural dynamics
remains a significant yet underexplored challenge in computational neuroscience. To address this gap,
(Aldarondo et al., 2024) designed an artificial neural network that simulates rodent cortical dynamics by
integrating multi-scale biological constraints, including spike-timing-dependent plasticity and laminar-
specific connectivity pattern. miVAE (Zhu et al., 2025) proposed a two-stage disentanglement framework
that jointly maps neural activity and sensory stimuli into a unified latent space. This approach enables
robust identification of cross-modal correlations without requiring subject-specific calibration.

We propose a hybrid SNN-ANN framework that integrates autoencoders and contrastive learning module
to complete simultaneous behavioral decoding and neural spike encoding. The proposed architecture
leverages the temporal dynamics of spiking neural networks (SNNs) to effectively extract features from
neural spike data, while employing artificial neural networks (ANNs) to capture rich representations
from corresponding behavioral data. We combine the feature extraction capabilities of U-shaped models
for motion trajectories and neural signals with the generalization strengths of contrastive learning. The
incorporation of spiking neural networks contributes to adopt biological mechanism when encoding and
decoding natural spikes. Evaluation results demonstrate that our framework outperforms existing methods
not only in single-day tasks but also in cross-day scenarios.

The main contributions of our work are summarized as follows:

¢ Bidirectional alignment framework: A novel approach for joint embedding of neural spikes and
behavior via similarity constraints across trials. It enables discovery of a latent space where stable
neural manifold and behavior are bidirectional aligned.

e Hybrid SNN-ANN autoencoders: Integration of SNNs (capturing biological fidelity) for robust
reconstruction of neural data and ANNs for sequential behavior data utilizes distinct properties of two
modalities.

e Cross-day generalized capability: A pretraining protocol optimizes on multi-days animal
experimental datasets, enhancing generalization of understanding neural signals and corresponding
behaviors. The comparison experiments show SOTA ability after finetuning the model on spike-to-
behavior decoding and behavior-to-spike simulation tasks.
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2 RELATED WORKS
2.1 Neural signal decoding and simulation

Brain-computer interface (BCI) technology represents a transformative paradigm in human-machine
interaction. It enables direct communication between the brain and external devices without relying on
conventional neuromuscular pathways (Tangermann et al., 2012} Song et al., [2025). BCI system acquires
and decodes neural signals to translate user intentions into actionable commands, generating applied fields,
including neurorehabilitation (Zhang et al., [2024), assistive technologies (Awuah et al., 2024)), cognitive
augmentation (Khorev et al.,|2024)) and immersive communication (Ghasemi et al., 2024). These technique
delineates the operational framework and implementation guidelines for BCI protocols, with emphasis on
signal acquisition (Sun et al., 2025) and neural decoding (Dong et al., 2023)).

Signal acquisition constitutes the foundational stage of the BCI system, directly determining the
quality and interpretability of subsequent neural data analysis. This process involves the recording
of electrophysiological or hemodynamic activity from the brain using either non-invasive modalities,
including electroencephalography (EEG) (Binnie and Prior, [1994), functional near-infrared spectroscopy
(fNIRS) (Naseer and Hongl 2015) and magnetoencephalography (MEG) (Proudfoot et al., 2014),or invasive
approaches like electrocorticography (ECoG) (Farias et al.,|2008) and intracortical microelectrode (Wang
et al., 2023) arrays. Key technical considerations include electrode placement and density, sampling rate,
signal-to-noise ratio optimization, artifact suppression, and the selection of appropriate signal paradigms.

Decoding neural signals into behavioral outputs has developed significant progress in current research.
POYO (Azabou et al., 2023 model introduces transformer framework to enable efficient training across
multiple sessions of neural recordings, which advancing the decoding applications. A recent study by
Cao et al. (Cao et al., 2025)) demonstrated that recording just a small part of the total neurons from dorsal
premotor cortex can help decode 3D hand movement trajectories with high accuracy. The BraVL (Du et al.,
2023) model aligns brain activity, visual images, and textual descriptions in a shared latent space, achieving
a high decoding accuracy on untrained new categories. It demonstrates the strong generalization capability
of contrastive learning in neural decoding tasks.

Although recent advances in algorithms have demonstrated their potential for neural decoding, cross-day
neural decoding remains a challenge due to neural signal shift and behavior state variability (Bashford
et al., 2024). To solve this problem, researchers worked in different aspects. A new neural speech decoding
framework that combines ECoG signal processing with deep learning improves the result of cross-day
decoding (Chen et al., 2024b). Researchers also designed the NEDS (Zhang et al., 2025b) network to help
improve encoding and decoding efficiency at the same time. This network leverages multitask masking,
alternating between neural, behavioral, and cross-modal masking during training. This method is able to
predict behavior from neural activity and predict neural activity from behavior at the same time. Unlike
NEDS, we employ a couple Unet-based architecture combined with contrastive learning to enhance
spike-to-behavior accuracy.

Simulating neural activity from a sequence of behavior is a significant study in neuroscience, and
breakthroughs in this direction could substantially advance the field of BCIs. Recent work has shown that
reinforcement learning can mimic the behavior of freely moving rats and predict neural activity in the
sensorimotor striatum and motor cortex (Aldarondo et al.,[2024). Researcher developed a neuromorphic
tactile system that uses spike timing, especially first-spike timing, to encode dynamic tactile information
about touch and grasp (Chen et al., 2024a). Furthermore, the NEUSPA modal (Yan et al., 2025) successfully
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integrates Izhikevich neurons with motor unit differentiation to simulate abnormal spike activity in post-
stroke spasticity. Moreover, miVAE (Zhu et al., 2025) employs a two-level disentanglement strategy to map
neural activity and visual stimuli into a unified latent space with artifical neural networks(ANN). Compared
with miVAE, our hybrid SNN-ANN model incorporates bidirectional alignment to discover neural manifold
and build shared latent space; meanwhile, pretraining protocol boost the generalized capability of cross-day
spike-to-behavior decoding and behavior-to-spike simulation.

2.2 Deep learning models in BCI

CNN s have been widely applied in neural signal decoding research. For instance, researchers at Purdue
University employed a CNN-based framework to implement neural encoding and decoding for dynamic
natural vision (Wen et al., 2018)). In a parallel development, a hybrid CNN-Transformer architecture was
introduced by a research group from the University of Electronic Science and Technology of China (Wen
et al.,|2018)), demonstrating enhanced efficiency in decoding visual neural activity into textual descriptions.
Furthermore, the CSM model (Petrosyan et al., 2021) successfully decoded macaque finger movement
trajectories by incorporating temporal dependencies through CNN structures, effectively correlating current
neural states with preceding moments.

Spiking neural networks (SNN5s) are biologically-inspired neural networks ZHANG et al.| (2023); We1
et al.|(2024)) that process information through discrete, asynchronous spikes or action potentials, stimulating
the event-driven communication of biological neurons. Compared to ANNs, SNNs work better in event-
driven data (Deng et al., [2020) and perform efficiently in computer vision tasks Zhang et al. (2021b).
CREST (Mao et al., [2025) is an event-based object detection framework. It leverages model with an
attention-based bridge, converting spikes to dense features while preserving spatiotemporal dynamics.
With lower energy cost, the Spike-Driven Transformer incorporates binary spike communication and
spike-driven self-attention (SDSA), achieving high accuracy on the ImageNet-1K dataset (Yao et al., 2023).

Inspired by the biological dynamics of neurons, spiking neural networks have emerged as a pivotal model
in computer vision and neuroscience fields Yao et al.[(2024). For example, Spike Voxel Coding (SVC) (Q1u
et al.,|2025) model utilize SNNs network to solve various 3D computer vision tasks, including classification,
detection and segmentation. Recent advances in the Dual-Spike Self-Attention (DSSA)mechanism (Shi
et al., 2024) and the Self-Backpropagation of Synaptic Modifications (SBP) (Zhang et al., 2021a) enhance
performance of the image classification task. The adaptive firing neuron model (AdaFire) also works well
in event-driven classification, object detection, and segmentation tasks (Wang et al., [2025). Apart from
the work in computer vision tasks, the spiking-based networks have proven to work well to bridge the gap
between neuroscience and behavior. The motorSRNN (Liu et al., |2024)) and STAA-SNN (Zhang et al.,
20254) both prove the high accuracy and efficiency of decoding from electrophysiology to tasks. Moreover,
the spiking-based transformers outperform in event-stream tasks Yao et al.| (2021)) and efficient training
process |Yao et al.| (2025)); 2.

In the field of representation alignment, contrastive learning has emerged as a dominant approach,
achieving remarkable performance gains across language (Pan et al., |2021)), vision (Yang et al., |2022)
and multimodal domains (Liu et al., 2023). However, conventional methodologies remain critically
dependent on large batches of negative samples, introducing substantial computational overhead and
inducing representation bias (Zolfaghari et al., 2021). Recent advances mitigate these limitations through
asymmetric network architectures and cross-modal alignment techniques (Jiang et al., 2025), enhancing
the efficacy of unsupervised paradigms. CLIP (L1 et al., 2021) and FLAVA (Singh et al., 2022) utilize
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dual-stream encoders to align vision-language embeddings. Subsequent work like CoCa (Yu et al., 2022)
unifies contrastive and generative objectives, outperforming supervised baselines across downstream tasks.

3 METHODS
3.1 Dataset description and preprocessing

In this study, the dataset of Joystick-controlled robotic arm whack-a-mole data from a macaque was
obtained from the Brain Science Data Center, Chinese Academy of Scienceﬂ where the open access data
repository are published. All animal procedures were conducted in accordance with protocols approved
by the Institutional Animal Care and Use Committee (IACUC) of the Institute of Neuroscience, Center
for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences. During
the experimental procedure, neural activity was recorded from a macaque performing an eight-direction
center-out task, as illustrated in Figure[I] Signals were collected from the macaque’s contralateral primary
motor cortex (M1). The dataset comprises neural signals acquired at 30 kHz across 64 channels, along with
simultaneous 1 kHz two-dimensional joystick voltage signals that serve as the decoding ground truth. Our
dataset comprised 32,083 trials collected over 22 days,with neural signals and macaque behavioral signals
simultaneously recorded during the experimental procedure. All neural recordings were obtained from a
macaque monkey during continuous sessions between April 1, 2025, and April 29, 2025.

Statistics Value
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Figure 1. Center-out task and data statistics. The left subplot demonstrates the pipeline of one trial of
center-out task. This animal experiment records how a macaque to react when the target appears and the
brain activity is recorded simultaneously. The right subplot shows statistics of our dataset.
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Figure 2. Data preprocessing procedure. The experiment mainly contains 4 steps including data collection,
spike detection, data reconstruction and downsampling. After preprocessing steps, neural spike data will
be segmented into 64 channels with 100 sampling points while behavioral data will be reshaped into 2
channels with 100 sampling points.

' https://www.braindatacenter.cn/datacenter/web/#/home
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The preprocessing pipeline, illustrated in Figure 2] involved the following steps: spike detection, spike
matrix reconstruction, behavioral data interpolation, downsampling, and smoothing. Neural preprocessing
commenced with spike detection on the raw 64-channel recordings to identify action potentials, converting
the continuous data into discrete spike events to improve subsequent feature extraction. Subsequently, a
spike matrix was reconstructed by aligning these waveforms, extracting their features, and structuring them
into a two-dimensional matrix. The x-axis represents the timestamp, and the y-axis corresponds to the
channels, with a sampling rate of 30 kHz for both the spike matrix and behavioral data.

To achieve temporal synchronization, behavioral data were interpolated to match the sampling rate of
the neural data, followed by spike matrix reconstruction. The linear interpolation function reshapes the
behavioral data to the same sampling rate as the spike data, as described in equation

ylil = (1 = o) - 2[p;]] + a - z[[p;]]. (D)

In this equation, p; = j - ’Z;”T_ll, n=0,1,...,n—1,a = p; — |p;|. m and n denotes the total number
of sampling points for raw signal and resampled signal, p; represents the position of j-th sample in the
original signal that corresponds to the j-th sample of the target signal. z[|p; || and z[[p;]] denote the lower

and higher index of sampling point in the raw signal near the resampled point.

Both neural and behavioral data were then downsampled to a unified sampling rate of 50 Hz. The
downsampling equation for neural spikes is given in equation 2]

(k+1)I-1

P= )Y Pl 2)

t=kI

where P, denotes spike, k represents the trial number and I indicates the window width. For the behavior
signal, the downsampling equation is implemented similarly to the interpolation step, as shown in equation
After aligning the spike and behavior data, a smoothing filter was applied to the behavioral data to
enhance the signal-to-noise ratio (SNR). The equation for the Gaussian noise filter is provided in equation

. 1 i .
Gli] = 27TUexp (_W> , i=—k —k+1,...,0,....k—1,k, (3)
where o represents the standard deviation, i denotes the i-th sampling points in the signal. The Gaussian
smoothing filter reduces noise and high-frequency components while preserving the overall signal shape
through weighted averaging with Gaussian weights, thereby better capturing the macaque’s behavior.

After the aforementioned preprocessing steps, the final preprocessed data structure comprised a 64-
dimensional spike train and a 2-dimensional trajectory per trial. Each trial was segmented into 2-second
samples containing 100 temporal points before being input to the network.

3.2 Proposed method
3.2.1  Overall architecture

We propose AlignNet, a novel framework for contrastive learning of alignment of spike-and-behavior
patterns. The architecture comprises three core components: a SNN-based autoencoder dedicated to natural
spike data, an ANN-based auencoder for behavior data, and a contrastive learning module. Figure
illustrates the overview of the AlignNet framework.
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The autoencoder performs unsupervised learning by learning an efficient representation (encoding) of
input data through training the network to accurately reconstruct its original input. In AlignNet, two
autoencoders with unsharable weights are employed to reconstruct natural spikes and behavior. We set
U-based network as the basic framework for our dataset, the multi-layer convolutions extract the features
of spikes and behavior temporally and spatially; meanwhile, skip connection ensures information reusage
for the process of upsampling and deconvolution. Instead of conventional ANNs, we utilize SNNs for
encoding and decoding brain activities since such spiking-based networks model neural dynamics more
closely, typically composed of multiple layers of spiking neurons. Specifically, in our implementation, we
adopt the Leaky Integrate-and-Fire (LIF) spiking neuron nodes (Maass, | 1997), which will be illustrated in
detail later.

The contrastive learning component facilitates the construction of a shared latent space for both natural
spikes and behavior, where each data modality is projected into hidden vector representations. This
technique operates by contrasting similar (positive) and dissimilar (negative) data samples. Rather than
relying on explicit labels, it leverages the inherent structure of the data to learn discriminative features and
encourage alignment between the spike and behavior representations. By integrating contrastive learning,
the representations of natural spikes and behavior become constrained within a coherent and aligned latent
space.

Natural Spike Encoder (SNN) . . Natural Spike Decoder (SNN)
Skip Connection
r‘*“*******“““*******“*r *********************** R B
#100 ) } } #100,
1 v
Bottlene:k= UpBottIeneck al .
#8
Natural Splke ‘255 L *256 Natural Spike
(x) (x)
*64
*32 B, BiSy| BySs| = |BiSy & j
. B, B>S2| - |B;Sy
Behavior Encoder (ANN) B, ||5,s, Contrastive .| Behavior Decoder (ANN)
Learning —| #100
ﬂlﬂo - H H H i
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#Z | By || ByS) ByS;| BySs| - “z
M MLP
? UL > > /
Bottleneck UpBottleneck
Behavior Behavior (Xp)
*32
(Xp) . *64 *32
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Bottleneck Conv to 1x1 onv mLp
@ RelU Activation *256 Channel Size Batch Normalization Perceptron
UpBottleneck Conv Back to 12x8

Figure 3. Hybrid SNN-ANN pretrain architecture. The model consists of three core modules: natural
spike autoencoder (green), behavior autoencoder (yellow), and contrastive learning module (red). During
the process of encoding, neural data and behavior are embedded through multiple convolution module,
with batch normalization, activation layer and pooling operation. In the decoding phase, the model utilizes
latent representations and skip connection to reconstruct the original input. In the autoencoder of natural
spike, the activation layer is a Leaky Integrate-and-Fire node while ReLLU activation function is utilized
in the behavior autoencoder. To achieve cross-modal alignment between neural activity and behavioral
patterns, contrastive learning constrains the latent representations generated by both autoencoders within a
shared latent space.
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3.2.2 Hybrid SNN-ANN autoencoders

Behavioral experiments involved simultaneous recordings of natural spiking activity and corresponding
behavioral sequences during a Center-Out task. In this task, monkeys guided a cursor via a joystick to
interact with visual targets. The neural data consisted of spiking signals, while the behavioral data were
quantified as the trajectories of the cursor movements across trials. The encoder-decoder framework is
grounded in the principle of reconstructing input data from its latent representations. The fundamental
operations are defined as:

z = f(x), 4)

x = g(z). (5)

Specifically, the encoder f(-) transforms the input data x into a lower-dimensional latent representation z,
and the decoder g(-) subsequently aims to reconstruct the original input from z.

To facilitate contrastive learning in our framework, the latent vectors derived from both spike and behavior
data must share the same dimensionality. We therefore employed a Multi-Layer Perceptron (MLP) to
project the behavioral trials into the same dimensional space as the neural dSata prior to the encoding
step. This design also aids the U-based encoder in more effectively capturing the temporal dynamics
present in both the spiking and behavioral embeddings. As the research objective is to achieve bidirectional
mapping—decoding behavior from spikes and simulating spikes based on behavior—we adopted a Mean
Squared Error (MSE) loss function to train the U-based Autoencoders.

The encoder architecture sequentially integrates Convolution, Batch Normalization, ReLLU activation,
and Pooling operations. Spiking data consists of non-negative, multi-channel voltage signals that exhibit
temporal variations, capturing diverse neural activities across different brain regions. We utilize a U-based
encoder to process trials of natural spike data (Xg € RS*CY, enabling the extraction of both relative
temporal patterns within time intervals (5) and spatial correlations across channels (C'). The mathematical
representation of natural spike encoding is defined as follows:

Hgpike = Bottleneck(Downsample*k(X s)), (6)
Bottleneck = LN(TW?! x AvgPool(X))), (7)
Downsample = MaxPool(CONV (X)), (8)

CONV = LN(BN(W? « LN(BN(W? % X)))), 9)

where Hgpikes € RS*P is the hidden vector of nature spikes and Bottleneck reshapes the output of
k-layer downsample into D-dimension vectors. Specifically, the bottleneck process includes AvgPool
denoting 1x1 average pooling with stride 1, 1! representing an 1 x 1 convolution kernel and an ReL.U
activation function (max(0, z)). Downsample contains a convolution stage and a function of MaxPool
denoting 2x2 max pooling with stride 2. In the convolution layer, * represents convolution operation and
W) are 3 x 3 convolution kernels with distinct input and output dimensions. Moreover, BN represents
batch normalization and LN denotes the LIF neuron that can be described as:

ytn — pt—1n + % []t—lv” — (Ht_l’" - Vresetﬂ ) (10)

S =0 (VP —uy), (11)
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Ht,n — ‘/reset . St,n + Vt,n @ (1 o St,n) 7 (12)

where 7 is the membrane potential time constant, ¢ and n respectively denote the indices of the time step
and the n-th layer. H~1" is the membrane potential from previous time step, /> denotes the input data at
the time step ¢ and the n-th layer, and V%" is the updated membrane potential. S*" is the spike sequence
through the Heaviside function ©, in which vy, determines whether V" triggers a spike or remains silence.
In our research, we fix 7, vy, and Vieger as 2, 0.3 and O respectively.

Similarly, the process of encoding behavior from a sequence of actions (X € R5*2) to hidden vectors
(HBehavior € R¥*P) works through k-layer downsample and botteneck. Different with natural spike
encoding, LNs are replaced with ¢ denoting ReLU activation function(max (0, z)).

The decoder is trained to reconstruct input data from latent representations. Both natural spike and
behavior decoders consist of 4 steps including Upsampling, Convolution, Batch Normalization and
activation. Skip connection is used for creating direct pathways between encoder and decoder layers by
concatenating feature maps from the encoding path with corresponding upsampled features in the decoding
path. Therefore, the decoder is defined as:

Xspike = Upsamplek<Hspik:e)a (13)
Upsample = LN(BN (W® « LN(BN (W) « X€at))), (14)
X € = Concat( X downsample Hpike), (15)

where Upsample denotes k-layer upsampling (transposed convolution, Batch Normalization and activation),
Xdownsample 54 the corresponding encoder-level feature map (skip connection).

3.2.3 Contrastive learning

In AlignNet, contrastive learning paradigm learns representations of behavior and simulating natural
spikes by contrasting positive pairs against negative pairs in a latent space. Given an anchor sample, the
target is to pull positive samples closer while pushing negative samples farther apart. The negative sample
in this study is defined as the non-responding behavior or nature spikes out of one trial. According to the
task of behavior decoding and natural spike simulation, multimodal domains are obejective to be aligned.
Therefore, we levarage a batch of IV spike-behavior pairs {(.S;, B; )}Z 1> the contrastive learning objective
is to reduce the loss of:

(ESpike + E’Behavior) ) (16)

N —

LcL =

where the spike-to-behavior loss is:

_Z eXp (fs(Xs), fo(XB))/T)
S exp((fs(Xs), for (XB))/7)

and the behavior-to-spike 10ss L pehavior 1S Symmetrically defined. f(-) is an embedding function
corresponds natural spike encoder or behavior encoder in our framework. 7 is a temperature hyperparameter.
We constrict the hidden vectors in the latent space by maximizing the similarity of the spike-and-behavior
pairs. Consequently, the embedding of natural spikes can be considered as the represatation of behavior,
which is decoded into behavior; similarly, the embedding of behavior can be decoded by the natural spike
decoder directly to simulate the brain activity.

'CSpike = - (17)
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Figure 4. Strategies of fine-tuning tasks (Neural decoding and simulation). Arrows denote supervised
training signal flow. During fine-tuning, input spike embeddings are regarded as latent proxies of ground
truth, leveraging contrastively-aligned representations.

4 EXPERIMENTS AND RESULTS
4.1 Training setting

In the experimental design, the dataset was partitioned into three distinct subsets: pretraining, fine-
tuning, and testing. The pretraining phase involves joint optimization of the encoder and decoder to model
both neural spiking dynamics and behavioral patterns. Data from 19 consecutive days were allocated for
pretraining, during which neural and behavioral representations are learned within a shared latent space
to achieve cross-day alignment. This pretrained model is expected to exhibit enhanced generalization
capability across different recording days, thereby improving overall model efficiency.

During the fine-tuning stage, we conducted two downstream tasks: neural decoding and natural spike
simulation, where all parameters were fine-tuned. Implementation strategies for both tasks are detailed
in Figure 4, During the fine-tuning stage, we implement a supervised training paradigm where target
labels are guided to predict behavioral trajectories or natural spike patterns. For evaluation, input and
output representations are regarded as aligned in the embedding space, since the model’s contrastive
pretraining establishes consistent latent representations for behavioral and neural dynamics. Consequently,
natural spikes are encoded into latent representations via the spike encoder, followed by fine-tuning of the
parameters in the behavior decoder to obtain enhanced prediction results.

To evaluate cross-day generalization, we established two experimental protocols: single-day and cross-
day. For the single-day task, we split 80% of the data from one day as training set and 20% from on the
same day as evaluation set. In the cross-day task, two days of data was used for training and one held-out
day for evaluation, assessing generalization capability.

4.2 Performance evaluation

To evaluate performance of our model, we benchmark the model performance against several established
models to ensure a comprehensive comparison. In commonly used models, we employ the Wiener
Filter, Gated Recurrent Unit (GRU), and vanilla MLP as benchmarks. The Wiener Filter (Glaser et al.,
2020) represents the classical statistical approach, providing an optimal linear estimate under stationary
assumptions. For deep learning baselines, we include GRU model to handle the time-series nature of
the data and a MLP as a simple yet powerful feed-forward benchmark. The GRU’s ability to learn from
historical information makes it suitable for modeling the temporal dynamics of neural activity, while the
MLP tests the efficacy of treating sequences as fixed-dimensional vectors. This selection allows us to
contrast linear, recurrent, and dense non-linear methodologies.
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Beyond these comparatively simple benchmarks, we delve into more complex architectures to implement
decoding and simulation. Besides UNet structure, we tried to utilize Resnet, which enables the training of
extremely deep networks by mitigating the vanishing gradient problem, allowing gradients to flow directly
through these identity mappings. Building on this, a hybrid Resnet+UNet model is implemented, where
the Resnet encoder captures features at multiple scales, and the UNet decoder pathway facilitates precise,
detailed output generation by combining high- and low-level features, which is critical for accurate signal
reconstruction.

In our experiments, the evaluation metrics primarily include R-square Error and Pearson correlation
coefficient(PCC). R-square Error serves as a key measure for assessing regression performance by
quantifying the proportion of variance explained by the model. The equation of R-squared function
can be shown as equation [I8]

P2 >y (i — i) :

- n —\2 ( 8)
Zi:l(yi )

where y; means the actual value of the i-th observation, j; means the predicted value of the i-th observation,

y means the mean of actual values.

The PCC evaluates the linear correlation between predicted movements and ground-truth data, with its
calculation involving covariance normalization; this metric is also employed in spike simulation tasks to
measure the similarity between simulated and natural brain activity patterns, where higher values indicate
greater pattern similarity. The equation can be shown as

2 i1 (i = 7)(yi — 9) , 19
Vo= 2PV i - 0)? (19)

In this equation, x; and y; means the value of the i-th observation for variable X and Y while & and y means
the sample mean of variable X and Y.

PCC =

4.3 Results

Table 1. The performance of different models under single-day and cross-day conditions

Models Single-day Cross-day
spike—behavior(R?) behavior—spike(PCC) | spike—behavior(R2) behavior—spike(PCC)

Wiener Filter (Glaser et al.|[2020) 0.354 0.442 0.08 0.409
GRU 0.250 0.194 0.09 0.204
MLP 0.723 0.492 0.366 0.349
Resnet 0.413 0.323 0.327 0.201
Resnet+UNet 0.327 0.227 0.390 0.112
Ours 0.880 0.539 0.581 0.440

The performance of various models on spike-behavior and behavior-spike prediction tasks is summarized
in Table [I] We conducted both single-day and cross-day experiments to evaluate the proposed model’s
decoding capability and generalization performance.

4.3.1 Single-Day performance

In the single-day experiments, the models were trained and tested on data from the same recording
day. Eighty percent of the data were used for training and the remaining twenty percent for testing. This
experiment was designed to evaluate the model’s ability to learn the relationship between spike activity and
behavioral features within one day.
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Traditional models, the Wiener filter and GRU, exhibited limited predictive capability. The Wiener filter
achieved an R? of only 0.354 for spike-behavior decoding and a PCC of 0.442 for behavior-spike prediction.
The GRU performed even worse, with an R? of 0.250 and a PCC of 0.194. These results indicate that such
models struggle to capture the nonlinear and dynamic relationship between neural signals and behavior.
The MLP model performed slightly better, with an R? value of 0.723 for spike-behavior prediction and a
PCC of 0.492 for behavior-spike prediction. However, its performance is still limited by its insufficient
ability to capture the complex dynamics of neural signals.

Our proposed model significantly outperformed these baselines. It achieved an R? of 0.880 for spike-
behavior decoding and a PCC of 0.539 for behavior-spike prediction. This improvement can be attributed to
the model’s integrated U-Net architecture, contrastive learning mechanism, and bidirectional design, which
together enable more robust feature extraction and cross-modal alignment. Furthermore, after a single
training session, our model can directly perform bidirectional reasoning through fine-tuning. It can adapt to
different task requirements without changing the model architecture. This unified framework significantly
enhances the model’s versatility and deployment efficiency. In contrast, other models usually need to adjust
their architectures when dealing with different tasks, which increases the complexity of development and
maintenance.

4.3.2 Cross-Day performance

To evaluate model generalization across time, we further conducted cross-day experiments. In this setting,
the models were trained on data from two consecutive days and tested on data from a third day. The goal
was to test whether models can adapt to new data recorded on different days, where neural activity and
behavior may vary.

Traditional models showed a clear degradation in performance. The Wiener filter achieved an R? of only
0.08 for spike-behavior decoding and a PCC of 0.409 for behavior-spike prediction. The GRU model
performed similarly poorly, with an R? of 0.09 and a PCC of 0.204. These results indicate that the traditional
model has significant deficiencies in its cross-day generalization ability. The deep learning models MLP
and ResNet + UNet performed slightly better. The cross-day spike-behavior decoding R? value of MLP was
0.366, and the PCC of behavior-spike prediation was 0.349. The R? value of ResNet+UNet was 0.390, and
the PCC was 0.112. However, their performance in the cross-day task was still limited by the insufficient
ability to adapt to the dynamic changes of neural signals.

In contrast, our model demonstrated strong generalization capabilities. It achieved an R? of 0.581 for
spike-behavior decoding and a PCC of 0.440 for behavior-spike prediction. This performance gain is
attributed to the model’s contrastive pretraining strategy, which aligns neural and behavioral representations
across multiple sessions, and its use of hybrid SNN-ANN to extract event-driven and sequential features
separately. It is worth noting that our model also maintains the advantage of keeping the same architecture
in cross-day tasks. Through one training session and subsequent fine-tuning, bidirectional decoding
functionality can be achieved. There is no need to modify the model structure for different tasks. In contrast,
traditional methods and other deep learning models often require architectural adjustments and re-training
across different tasks, which reduces the efficiency and universality of the system.
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Figure 5. Spike-to-behavior case analysis. We present the results of three single-day and three cross-day
case analyses. The upper part and lower part of each figure means the change of x and y axis of behavior
decoding result, the red line means the ground truth while the blue line means the result of our prediction.

4.4 Case analysis

4.4.1 Decoding task

To visualize the model’s decoding performance, we plot the decoding outcome graphs in Figure[5| We
present the results of three single-day decoding cases and three cross-day decoding cases, with data selected
randomly. In each subplot, the upper section shows the variation along the x-axis, while the lower section
displays the variation along the y-axis. The red and blue lines represent the ground truth and prediction,
respectively. We can clearly observe that in the single-day decoding results, the predicted values align
closely with the actual values. To demonstrate the advantages of our model, in addition to the single-day
results, we have also randomly selected three cross-day result plots. These include cases with both strong
and relatively weaker fitting performance. We can find that our model can roughly depict the movement
trajectory of the macaque. Nevertheless, the predicted trajectories confirm the effectiveness of our model in
cross-day behavioral decoding tasks.

4.4.2 Simulation task

We present the results of behavioral spike simulation in Figure[6| where the leftmost plot shows the single-
day simulation results, while the middle and right plots display cross-day results. The upper and lower
subplots represent the ground truth and prediction, respectively, with the x-axis representing timestamps
and the y-axis representing channel numbers, in a 100x64 dimension. In the single-day results, we observe
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Figure 6. Behavior-to-spike case analysis. We display results from three single-day and three cross-day
experiments. In each figure, the upper subplot depicts the ground truth while the lower subplot shows the
performance of prediction result of our figure. X axis means the 100 time points while the y axis means 64
channels.
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Figure 7. Channel comparison between ground truth and prediction. We compare the firing rates of
ground truth and predicted neural activity across different channels, illustrating model performance for
both single-day and cross-day scenarios. In each figure, 64 channels were split into 8 groups while each
group contains 8 channels.

that the model’s predictions closely align with the ground truth across most channels and timestamps,
demonstrating the model’s high efficiency in single-day tasks. In the two cross-day results, the middle plot
shows strong simulation performance in channels 20 to 35 and 1 to 10, but fails to capture spike activity
in channels 55 to 64. In the right plot, the simulation achieves better results in channels 1 to 10, while
partially reproducing neural activity in channels 20 to 35.

Frontiers 14



Hong et al. AlignNet

To further compare the firing rate of different channels, we split the 64 channels of each trial into several
groups. Every group contains 8 channels, the figure can be shown as Figure [/ In each plot, x axis means
the average firing rate of different channels. The equation can be shown as equation

N

FR[i] = % > Uislidz1y- (20)
t=1

In this equation, i means the channel index while t means the value of t-th sampling points in i-th channel.
The results reveal consistent firing rate patterns across both ground truth and prediction data. Specifically,
channels 1-8 and 25-32 exhibit significantly higher firing rates in all experimental conditions, whereas
channels 33-64 show substantially lower firing rates in the ground truth data and even more attenuated
activity in the predictions. This differential pattern suggests that channels 1-8 and 25-32 may be more
strongly correlated with macaque behavioral outputs while 33-64 shows little relationship with macaque
behavior cross different days. We suggest that during cross-day training, our model effectively captures
the dynamics of high-frequency neural activity but shows limitations in simulating channels with weak
neuronal firing. This indicates that while some neurons may lack cross-day consistency or task relevance,
our model successfully identifies and learns the simulation patterns of behaviorally-relevant neurons. These
findings collectively demonstrate our model’s superior capability in cross-day neural decoding tasks.

5 CONCLUSION

This work introduces an innovative network architecture that synergistically combines the advantages of
hybrid SNN-ANN framework and contrastive learning. The proposed model simultaneously handles two
key tasks: decoding behavior from neural spikes and simulating spikes from behavioral data. It achieves
comparable performance under both single-day and cross-day training settings compared to existing
baseline models. SNNs effectively extract features from neural spikes, while ANNs encode information
from macaque behavior. The UNet architecture and contrastive learning collaboratively map both types
of data into a shared latent space during training. Additional analysis of simulation outputs revealed that
while strong inter-day consistency emerged in behaviorally relevant neural channels, others showed no
detectable spike activity, suggesting that the model selectively captures task-critical neural representations.
These findings highlight the broad utility and robustness of the proposed framework for neural decoding
and simulation applications.
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